预测针对突变表位的 T 细胞受体功能。
Predicting T cell receptor functionality against mutant epitopes.
机构信息
Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Department of Statistics, Ludwig Maximilian Universität, 80539 Munich, Germany; Munich Center for Machine Learning (MCML), Ludwig Maximilian Universität, 80538 Munich, Germany.
出版信息
Cell Genom. 2024 Sep 11;4(9):100634. doi: 10.1016/j.xgen.2024.100634. Epub 2024 Aug 15.
Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict the effect of epitope point mutations on T cell functionality, we here present the random forest-based model Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV, totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs. Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated epitopes.
癌细胞和病原体可以通过免疫原性表位的突变来逃避 T 细胞受体 (TCR) 的识别。TCR 交叉反应(即识别具有序列相似性的多个表位)可以抵抗这种逃逸,但在基于细胞的免疫疗法中通过靶向自身抗原可能会引起严重的副作用。为了预测表位点突变对 T 细胞功能的影响,我们在这里提出了基于随机森林的模型 Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM)。P-TEAM 是在三个数据集上进行训练和测试的,这些数据集包含了对模型表位 SIINFEKL、肿瘤新表位 VPSVWRSSL 和人类巨细胞病毒抗原 NLVPMVATV 的单个氨基酸突变的 TCR 反应,总共有 9690 个独特的 TCR-表位相互作用。P-TEAM 能够准确地对 T 细胞反应进行分类,并对未观察到的单点突变和未观察到的 TCR 进行定量预测。总的来说,P-TEAM 提供了一种有效的计算工具来研究针对突变表位的 T 细胞反应。