Suppr超能文献

深度学习提高颅内血管壁 MRI 质量,更好地对潜在罪犯斑块进行特征描述。

Deep learning improves quality of intracranial vessel wall MRI for better characterization of potentially culprit plaques.

机构信息

Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.

AIRS Medical, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Aug 16;14(1):18983. doi: 10.1038/s41598-024-69750-4.

Abstract

Intracranial vessel wall imaging (VWI), which requires both high spatial resolution and high signal-to-noise ratio (SNR), is an ideal candidate for deep learning (DL)-based image quality improvement. Conventional VWI (Conv-VWI, voxel size 0.51 × 0.51 × 0.45 mm) and denoised super-resolution DL-VWI (0.28 × 0.28 × 0.45 mm) of 117 patients were analyzed in this retrospective study. Quality of the images were compared qualitatively and quantitatively. Diagnostic performance for identifying potentially culprit atherosclerotic plaques, using lesion enhancement and presence of intraplaque hemorrhage (IPH), was evaluated. DL-VWI significantly outperformed Conv-VWI in all image quality ratings (all P < .001). DL-VWI demonstrated higher SNR and contrast-to-noise ratio (CNR) than Conv-VWI, both in normal walls (basilar artery; SNR 4.83 ± 1.23 vs. 3.02 ± 0.59, P < .001) and lesions (contrast-enhanced images; SNR 22.12 ± 11.68 vs. 8.33 ± 3.26, P < .001). In the assessment of 86 lesions, DL-VWI showed higher confidence of detection (4.56 ± 0.55 vs. 2.62 ± 0.77, P < .001), more concordant IPH characterization (Cohen's Kappa 0.85 vs. 0.59) and greater enhancement. For culprit plaque identification, IPH exhibited higher sensitivity in DL-VWI compared to Conv-VWI (70.6% vs. 23.5%) and excellent specificity (94.3% vs. 94.3%). Deep learning application of intracranial vessel wall images successfully improved the quality and resolution of the images. This aided in detecting vessel wall lesions and intraplaque hemorrhage, and in identifying potentially culprit atherosclerotic plaques.

摘要

颅内血管壁成像(VWI)需要高空间分辨率和高信噪比(SNR),是基于深度学习(DL)的图像质量改善的理想选择。本回顾性研究分析了 117 例患者的常规 VWI(Conv-VWI,体素大小为 0.51×0.51×0.45mm)和去噪超分辨率 DL-VWI(0.28×0.28×0.45mm)。对图像的质量进行了定性和定量比较。评估了使用病变增强和斑块内出血(IPH)的存在来识别潜在的动脉粥样硬化斑块的诊断性能。DL-VWI 在所有图像质量评分中均显著优于 Conv-VWI(均 P<.001)。DL-VWI 在正常壁(基底动脉;SNR 4.83±1.23 比 3.02±0.59,P<.001)和病变(增强图像;SNR 22.12±11.68 比 8.33±3.26,P<.001)中均表现出更高的 SNR 和对比噪声比(CNR)。在 86 个病变的评估中,DL-VWI 显示出更高的检测置信度(4.56±0.55 比 2.62±0.77,P<.001),更一致的 IPH 特征(Cohen Kappa 0.85 比 0.59)和更大的增强。对于罪犯斑块的识别,与 Conv-VWI 相比,DL-VWI 中 IPH 表现出更高的敏感性(70.6%比 23.5%)和极好的特异性(94.3%比 94.3%)。颅内血管壁图像的深度学习应用成功地提高了图像的质量和分辨率。这有助于检测血管壁病变和斑块内出血,并识别潜在的动脉粥样硬化斑块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a73b/11329665/28ff4092cc7a/41598_2024_69750_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验