Digital R&D, Sanofi, Paris 75017, France.
Precision Medicine & Computational Biology, Sanofi, Vitry-sur-Seine 94400, France.
Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae509.
Spatial transcriptomics allow to quantify mRNA expression within the spatial context. Nonetheless, in-depth analysis of spatial transcriptomics data remains challenging and difficult to scale due to the number of methods and libraries required for that purpose.
Here we present SpatialOne, an end-to-end pipeline designed to simplify the analysis of 10x Visium data by combining multiple state-of-the-art computational methods to segment, deconvolve, and quantify spatial information; this approach streamlines the analysis of reproducible spatial-data at scale.
SpatialOne source code and execution examples are available at https://github.com/Sanofi-Public/spatialone-pipeline, experimental data is available at https://zenodo.org/records/12605154. SpatialOne is distributed as a docker container image.
空间转录组学允许在空间背景下定量 mRNA 表达。然而,由于需要多种方法和文库,因此对空间转录组学数据的深入分析仍然具有挑战性且难以扩展。
在这里,我们提出了 SpatialOne,这是一个端到端的管道,旨在通过结合多种最先进的计算方法来简化 10x Visium 数据的分析,以分割、去卷积和量化空间信息;这种方法简化了可重复空间数据的大规模分析。
SpatialOne 的源代码和执行示例可在 https://github.com/Sanofi-Public/spatialone-pipeline 上获得,实验数据可在 https://zenodo.org/records/12605154 上获得。SpatialOne 以 Docker 容器映像的形式分发。