Suppr超能文献

心力衰竭患者再发非计划性住院的原因和预测因素:一项队列研究。

Causes and predictors of recurrent unplanned hospital admissions in heart failure patients: a cohort study.

机构信息

The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Ramat-Gan, Israel.

School of Public Health, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

Intern Emerg Med. 2024 Nov;19(8):2213-2221. doi: 10.1007/s11739-024-03740-2. Epub 2024 Aug 18.

Abstract

Despite progress in therapy, heart failure (HF) inflicts a heavy burden of hospital admissions. In this study, we identified among 1360 community-dwelling HF patients (mean age 70.7 ± 11.3 years, 72.5% men) subgroups sharing similar profiles of unplanned hospital admissions, based on the admission causes and frequency of each cause. Hospital discharge summaries were reviewed for the main admission cause. Patient subgroups were identified via cluster analysis. We investigated baseline predictors associated with these subgroups, using multinomial logistic models. During 3421 patient-years, there were 5192 hospital admissions, of which 4252 (82%) were unplanned. We identified five patient subgroups (clusters 1-5) with distinctive hospitalization profiles. HF accounted for approximately one-third of admissions in the first patient cluster (23% of the patient sample). In contrast, patients in the second cluster (39% of the patient sample) were hospitalized for various reasons, with no single prominent admission cause identified. The other three clusters, comprising 16% of the patient sample, accounted for 42% of all unplanned hospitalizations. While patients in the third cluster were hospitalized mainly due to ischemic heart disease and arrhythmia, patients in the fourth and fifth clusters shared a high burden of recurrent HF admissions. The five patient clusters differed by baseline predictors, including age, functional capacity, comorbidity burden, hemoglobin, and cause of HF. HF patients differ significantly in the causes and overall burden of unplanned hospitalizations. The patient subgroups identified and predictors for these subgroups may guide personalized interventions to reduce the burden of unplanned hospitalizations among HF patients. Trial registration: ClinicalTrials.gov, NCT00533013. Registered 20 September 2007. https://clinicaltrials.gov/study/NCT00533013 .

摘要

尽管在治疗方面取得了进展,但心力衰竭(HF)仍给医院入院带来了沉重负担。在这项研究中,我们在 1360 名居住在社区的 HF 患者(平均年龄 70.7±11.3 岁,72.5%为男性)中,根据每个原因的入院原因和频率,确定了具有相似非计划性入院特征的亚组。对住院出院小结进行了主要入院原因的审查。通过聚类分析确定患者亚组。我们使用多项逻辑回归模型研究了与这些亚组相关的基线预测因素。在 3421 患者年中,共有 5192 次住院,其中 4252 次(82%)为非计划性住院。我们确定了五个具有独特住院特征的患者亚组(亚组 1-5)。在第一个患者亚组中,HF 约占入院人数的三分之一(占患者样本的 23%)。相比之下,第二个亚组(占患者样本的 39%)的患者因各种原因住院,未确定单一突出的入院原因。其他三个亚组,占患者样本的 16%,占所有非计划性住院的 42%。第三个亚组的患者主要因缺血性心脏病和心律失常住院,而第四个和第五个亚组的患者因反复 HF 住院负担较重。五个患者亚组在基线预测因素上存在差异,包括年龄、功能能力、合并症负担、血红蛋白和 HF 的病因。HF 患者在非计划性住院的原因和总体负担方面存在显著差异。确定的患者亚组及其预测因素可能指导 HF 患者减少非计划性住院负担的个性化干预措施。试验注册:ClinicalTrials.gov,NCT00533013。于 2007 年 9 月 20 日注册。https://clinicaltrials.gov/study/NCT00533013。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c00/11582252/d241de55245d/11739_2024_3740_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验