Suppr超能文献

代谢途径和网络分析的整合,用于发现受控水果-蔬菜饮食干预后猪粪便中的生物标志物。

Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention.

机构信息

Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.

Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.

出版信息

Food Chem. 2024 Dec 15;461:140836. doi: 10.1016/j.foodchem.2024.140836. Epub 2024 Aug 10.

Abstract

This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.

摘要

本研究旨在建立一种使用非靶向代谢组学方法(包括代谢途径和网络分析)识别膳食摄入量生物标志物的策略。该策略成功应用于根据《美国人饮食指南》(DGA)建议,在摄入富含多酚的果蔬(FV)饮食后,鉴定猪粪便样本中膳食摄入量生物标志物。使用基于非靶向代谢组学方法的液相色谱-高分辨质谱(LC-HRMS),通过代谢途径和网络分析,在饮食处理组中鉴定潜在的生物标志物。主成分分析(PCA)结果表明,在对照组和两个 FV 干预组之间,粪便代谢物谱存在显著差异,表明 FV 干预后饮食引起的粪便代谢物谱差异。常见类黄酮(如表儿茶素和原儿茶酸)或独特类黄酮(如 5,3',4'-三羟基-3-甲氧基-6,7-亚甲二氧基黄酮和 3,5,3',4'-四羟基-6,7-亚甲二氧基黄酮)的代谢物被鉴定为高度区分因素,证实了它们作为 FV 饮食干预粪便标志物的潜力。使用靶向黄酮进行微生物途径预测为具有高可信度的生物标志物探索提供了有价值和可靠的信息。对这些有区别的离子特征之间的相关网络分析应用于寻找与可能的饮食生物标志物的联系,进一步通过生化见解验证了这些生物标志物。本研究表明,将代谢途径和网络分析与非靶向代谢组学方法相结合,对于在动物研究中快速准确地识别和预测受控饮食条件下的粪便生物标志物非常有效。该方法还可用于研究人类临床研究中的微生物代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验