Suppr超能文献

机器学习和自然语言处理在临床试验纳入标准解析中的应用:范围综述。

Machine learning and natural language processing in clinical trial eligibility criteria parsing: a scoping review.

机构信息

Roche Informatics, Warsaw, Poland; Poznan University of Technology, Poland.

Poznan University of Technology, Poland.

出版信息

Drug Discov Today. 2024 Oct;29(10):104139. doi: 10.1016/j.drudis.2024.104139. Epub 2024 Aug 19.

Abstract

Automatic eligibility criteria parsing in clinical trials is crucial for cohort recruitment leading to data validity and trial completion. Recent years have witnessed an explosion of powerful machine learning (ML) and natural language processing (NLP) models that can streamline the patient accrual process. In this PRISMA-based scoping review, we comprehensively evaluate existing literature on the application of ML/NLP models for parsing clinical trial eligibility criteria. The review covers 9160 papers published between 2000 and 2024, with 88 publications subjected to data charting along 17 dimensions. Our review indicates insufficient use of state-of-the-art artificial intelligence (AI) models in the analysis of clinical protocols.

摘要

临床试验中自动的入选标准解析对于队列招募至关重要,这关系到数据的有效性和试验的完成。近年来,强大的机器学习 (ML) 和自然语言处理 (NLP) 模型已经呈现出爆炸式的增长,这使得患者招募的过程更加流畅。在这项基于 PRISMA 的范围综述中,我们全面评估了 ML/NLP 模型在解析临床试验入选标准中的应用。该综述涵盖了 2000 年至 2024 年间发表的 9160 篇论文,其中 88 篇论文沿着 17 个维度进行了数据图表分析。我们的综述表明,在分析临床方案时,尚未充分利用最先进的人工智能 (AI) 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验