Suppr超能文献

利用大语言模型加强患者与试验匹配:新兴应用与方法的范围综述

Enhancing Patient-Trial Matching With Large Language Models: A Scoping Review of Emerging Applications and Approaches.

作者信息

Chen Hongyu, Li Xiaohan, He Xing, Chen Aokun, McGill James, Webber Emily C, Xu Hua, Liu Mei, Bian Jiang

机构信息

Department of Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL.

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN.

出版信息

JCO Clin Cancer Inform. 2025 Jun;9:e2500071. doi: 10.1200/CCI-25-00071. Epub 2025 Jun 9.

Abstract

PURPOSE

Patient recruitment remains a major bottleneck in clinical trial execution, with inefficient patient-trial matching often causing delays and failures. Recent advancements in large language models (LLMs) offer a promising avenue for automating and improving this process. This scoping review aims to provide a comprehensive synthesis of the emerging applications of LLMs in patient-trial matching.

METHODS

A comprehensive search was conducted in PubMed, Web of Science, and OpenAlex for literature published between December 1, 2022, and December 31, 2024. Studies were included if they explicitly integrated LLMs into patient-trial matching systems. Data extraction focused on system architectures, patient data processing, eligibility criteria processing, matching techniques, evaluation metrics, and performance.

RESULTS

Of the 2,357 studies initially identified, 24 met the inclusion criteria. The majority (21/24) were published in 2024, highlighting the rapid adoption of LLMs in this domain. Most systems used patient-centric matching (17/24), with OpenAI's generative pretrained transformer models being the most commonly used LLM. Core components of these systems included eligibility criteria processing, patient data processing, and matching, with some incorporating retrieval algorithms to enhance computational efficiency. LLM-integrated approaches demonstrated improved accuracy and scalability in patient-trial matching, although challenges such as performance variability, interpretability, and reliance on synthetic data sets remain significant.

CONCLUSION

LLM-based patient-trial matching systems present a transformative opportunity to enhance the efficiency and accuracy of clinical trial recruitment. Despite current limitations related to model generalizability, explainability, and data constraints, future advancements in hybrid modeling strategies, domain-specific fine-tuning, and real-world data set integration could further optimize LLM-based trial matching. Addressing these challenges will be crucial to realizing the full potential of LLMs in streamlining patient recruitment and accelerating clinical trial execution.

摘要

目的

患者招募仍然是临床试验执行中的一个主要瓶颈,患者与试验的匹配效率低下常常导致延误和失败。大语言模型(LLMs)的最新进展为自动化和改进这一过程提供了一条有前景的途径。本综述旨在全面综合大语言模型在患者与试验匹配中的新兴应用。

方法

在PubMed、科学网和OpenAlex中对2022年12月1日至2024年12月31日发表的文献进行了全面检索。如果研究明确将大语言模型集成到患者与试验匹配系统中,则纳入研究。数据提取集中在系统架构、患者数据处理、纳入标准处理、匹配技术、评估指标和性能方面。

结果

在最初识别的2357项研究中,24项符合纳入标准。大多数(21/24)研究于2024年发表,突出了大语言模型在该领域的迅速应用。大多数系统采用以患者为中心的匹配(17/24),OpenAI的生成式预训练变换器模型是最常用的大语言模型。这些系统的核心组件包括纳入标准处理、患者数据处理和匹配,一些系统还纳入了检索算法以提高计算效率。尽管存在性能变异性、可解释性和对合成数据集的依赖等挑战,但基于大语言模型的方法在患者与试验匹配中显示出更高的准确性和可扩展性。

结论

基于大语言模型的患者与试验匹配系统为提高临床试验招募的效率和准确性提供了变革性的机会。尽管目前在模型通用性、可解释性和数据限制方面存在局限性,但混合建模策略、特定领域微调以及真实世界数据集整合等未来进展可能会进一步优化基于大语言模型的试验匹配。应对这些挑战对于实现大语言模型在简化患者招募和加速临床试验执行方面的全部潜力至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f3/12169865/2eb08a96f8f9/cci-9-e2500071-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验