Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Holonyak Micro & Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Anal Chim Acta. 2024 Sep 8;1321:342998. doi: 10.1016/j.aca.2024.342998. Epub 2024 Jul 21.
Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time-dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes.
We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R = 0.99) between 0.4 μM and 25 μM with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF.
The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
推挽式微流控与脑片、培养细胞和工程组织的微透析采样产生小体积、质量受限的样品,其中包含从细胞外空间采样的分析物。这种采样方法与质谱(MS)检测相结合,可评估随时间变化的化学变化。我们的目标是开发一种方法,用于连续采样和将细胞外样品分离到皮升级别的微液滴中,然后使用纳喷雾电离(nESI)MS 对液滴进行特征分析。这里的主要重点是优化微流控装置的载液,使其既不影响皮升级别的液滴稳定性,也不影响 MS 对一系列分析物的检测兼容性。
我们开发并表征了一种 1-辛醇辅助的超小体积液滴微流控 nESI MS 系统,用于分析包括脑脊液(CSF)在内的不同样本中的神经递质。使用 1-辛醇油相可有效生成小至 65 pL 的水液滴,并能够检测到水中的乙酰胆碱(ACh)和γ-氨基丁酸(GABA)以及人工 CSF 中的这两种物质。连续的 MS 分析表明,液滴生成和 nESI-MS 分析物检测的长期稳定性可延长至 220 min。例如,ACh 响应在 0.4 μM 至 25 μM 之间表现出线性工作范围(R = 0.99),检测限为 370 nM(24 amol),可用于定量检测啮齿动物 CSF 中的 ACh。
已建立的液滴微流控 - nESI MS 方法可实现高时空分辨率分析微环境。该方法可能允许对活体动物大脑和脊髓中的神经化学物质和药物的时空动态进行微采样和监测。