Suppr超能文献

鉴定和表征 DYTN-1 中的 R-M 系统以提高质粒接合转移效率。

Identification and Characterization of an R-M System in DYTN-1 to Improve the Plasmid Conjugation Transfer Efficiency.

机构信息

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China.

出版信息

J Microbiol Biotechnol. 2024 Sep 28;34(9):1826-1835. doi: 10.4014/jmb.2402.02041. Epub 2024 Jul 26.

Abstract

has been identified as a representative strain with heterotrophic nitrification-aerobic denitrification capabilities (HN-AD), and demonstrates strong denitrification proficiency. Previously, we isolated the DYTN-1 strain from activated sludge, and it has showcased remarkable nitrogen removal abilities and genetic editability, which positions DYTN-1 as a promising chassis cell for synthetic biology engineering, with versatile pollutant degradation capabilities. However, the strain's low stability in plasmid conjugation transfer efficiency (PCTE) hampers gene editing efficacy, and is attributed to its restriction modification system (R-M system). To overcome this limitation, we characterized the R-M system in DYTN-1 and identified a DNA endonuclease and 13 DNA methylases, with the DNA endonuclease identified as HNH endonuclease. Subsequently, we developed a plasmid artificial modification approach to enhance conjugation transfer efficiency, which resulted in a remarkable 44-fold improvement in single colony production. This was accompanied by an increase in the frequency of positive colonies from 33.3% to 100%. Simultaneously, we cloned, expressed, and characterized the speculative HNH endonuclease capable of degrading unmethylated DNA at 30°C without specific cutting site preference. Notably, the impact of DNA methylase M9 modification on the plasmid was discovered, significantly impeding the cutting efficiency of the HNH endonuclease. This revelation unveils a novel R-M system in and sheds light on protective mechanisms employed against exogenous DNA invasion. These findings pave the way for future engineering endeavors aimed at enhancing the DNA editability of .

摘要

已鉴定出具有异养硝化-好氧反硝化能力(HN-AD)的代表性菌株,并且表现出很强的反硝化能力。之前,我们从活性污泥中分离出 DYTN-1 菌株,它具有显著的脱氮能力和遗传可编辑性,使 DYTN-1 成为合成生物学工程的有前途的底盘细胞,具有多种污染物降解能力。然而,该菌株在质粒接合转移效率(PCTE)方面稳定性较低,这会影响基因编辑效果,这归因于其限制修饰系统(R-M 系统)。为了克服这一限制,我们对 DYTN-1 中的 R-M 系统进行了表征,鉴定出一种 DNA 内切酶和 13 种 DNA 甲基酶,其中 DNA 内切酶鉴定为 HNH 内切酶。随后,我们开发了一种质粒人工修饰方法来提高接合转移效率,这使得单菌落产量显著提高了 44 倍。这伴随着阳性菌落的频率从 33.3%增加到 100%。同时,我们克隆、表达和表征了推测的 HNH 内切酶,它能够在 30°C 下在没有特定切割位点偏好的情况下降解未甲基化的 DNA。值得注意的是,发现了 DNA 甲基酶 M9 修饰对质粒的影响,这显著阻碍了 HNH 内切酶的切割效率。这一发现揭示了一种新的 R-M 系统,并阐明了针对外源 DNA 入侵的保护机制。这些发现为未来旨在增强 DNA 可编辑性的工程努力铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e38e/11473606/7111efc746d3/jmb-34-9-1826-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验