Suppr超能文献

用于临床超声成像的无监督散斑噪声降低技术。

Unsupervised speckle noise reduction technique for clinical ultrasound imaging.

作者信息

Jung Dongkyu, Kang Myeongkyun, Park Sang Hyun, Guezzi Nizar, Yu Jaesok

机构信息

Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Techology, Daegu, Korea.

The Interdisciplinary Studies of Artificial Intelligence, Daegu Gyeongbuk Institute of Science and Techology, Daegu, Korea.

出版信息

Ultrasonography. 2024 Sep;43(5):327-344. doi: 10.14366/usg.24005. Epub 2024 Jul 1.

Abstract

PURPOSE

Deep learning-based image enhancement has significant potential in the field of ultrasound image processing, as it can accurately model complicated nonlinear artifacts and noise, such as ultrasonic speckle patterns. However, training deep learning networks to acquire reference images that are clean and free of noise presents significant challenges. This study introduces an unsupervised deep learning framework, termed speckle-to-speckle (S2S), designed for speckle and noise suppression. This framework can complete its training without the need for clean (speckle-free) reference images.

METHODS

The proposed network leverages statistical reasoning for the mutual training of two in vivo images, each with distinct speckle patterns and noise. It then infers speckle- and noise-free images without needing clean reference images. This approach significantly reduces the time, cost, and effort experts need to invest in annotating reference images manually.

RESULTS

The experimental results demonstrated that the proposed approach outperformed existing techniques in terms of the signal-to-noise ratio, contrast-to-noise ratio, structural similarity index, edge preservation index, and processing time (up to 86 times faster). It also performed excellently on images obtained from ultrasound scanners other than the ones used in this work.

CONCLUSION

S2S demonstrates the potential of employing an unsupervised learning-based technique in medical imaging applications, where acquiring a ground truth reference is challenging.

摘要

目的

基于深度学习的图像增强在超声图像处理领域具有巨大潜力,因为它可以准确地对复杂的非线性伪像和噪声进行建模,如超声散斑图案。然而,训练深度学习网络以获取干净且无噪声的参考图像存在重大挑战。本研究引入了一种无监督深度学习框架,称为散斑到散斑(S2S),用于散斑和噪声抑制。该框架无需干净(无散斑)的参考图像即可完成训练。

方法

所提出的网络利用统计推理对两个体内图像进行相互训练,每个图像具有不同的散斑图案和噪声。然后,它无需干净的参考图像即可推断出无散斑和无噪声的图像。这种方法显著减少了专家手动标注参考图像所需的时间、成本和精力。

结果

实验结果表明,所提出的方法在信噪比、对比度噪声比、结构相似性指数、边缘保留指数和处理时间(快达86倍)方面优于现有技术。它在本研究中使用的超声扫描仪以外的其他超声扫描仪获取的图像上也表现出色。

结论

S2S证明了在医学成像应用中采用基于无监督学习的技术的潜力,在这些应用中获取真实参考具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33a1/11374585/46c4310f12d1/usg-24005f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验