Rom Christopher L, Yox Philip, Cardoza Abby M, Smaha Rebecca W, Phan Maxwell Q, Martin Trevor R, Maughan Annalise E
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States.
Chem Mater. 2024 Jul 26;36(15):7283-7291. doi: 10.1021/acs.chemmater.4c01160. eCollection 2024 Aug 13.
Chloride-based solid electrolytes are intriguing materials owing to their high Li ionic conductivity and electrochemical compatibility with high-voltage oxide cathodes for all-solid-state lithium batteries. However, the leading examples of these materials are limited to trivalent metals (e.g., Sc, Y, and In), which are expensive and scarce. Here, we expand this materials family by replacing the trivalent metals with a mix of di- and tetra-valent metals (e.g., Mg and Zr). We synthesize LiMgZrCl in the spinel crystal structure and compare its properties with the high-performing LiScCl that has been reported previously. We find that LiMgZrCl has lower ionic conductivity (0.028 mS/cm at 30 °C) than the isostructural LiScCl (1.6 mS/cm at 30 °C). We attribute this difference to a disordered arrangement of Mg and Zr in LiMgZrCl, which may block Li migration pathways. However, we show that aliovalent substitution across the Li MgZr Cl series between LiMgCl and LiZrCl can boost ionic conductivity with increasing Zr content, presumably due to the introduction of Li vacancies. This work opens a new dimension for halide-based solid electrolytes, accelerating the development of low-cost solid-state batteries.
基于氯化物的固体电解质因其高锂离子电导率以及与全固态锂电池的高压氧化物阴极具有电化学兼容性而成为引人关注的材料。然而,这些材料的主要实例仅限于三价金属(例如,钪、钇和铟),它们价格昂贵且稀缺。在此,我们通过用二价和四价金属(例如,镁和锆)的混合物替代三价金属来扩展这个材料家族。我们合成了具有尖晶石晶体结构的LiMgZrCl,并将其性能与先前报道的高性能LiScCl进行比较。我们发现LiMgZrCl的离子电导率(30℃时为0.028mS/cm)低于同结构的LiScCl(30℃时为1.6mS/cm)。我们将这种差异归因于LiMgZrCl中镁和锆的无序排列,这可能会阻碍锂的迁移路径。然而,我们表明,在LiMgCl和LiZrCl之间的LiMgZrCl系列中进行异价取代可以随着锆含量的增加提高离子电导率,这可能是由于锂空位的引入。这项工作为基于卤化物的固体电解质开辟了一个新的方向,加速了低成本固态电池的发展。