Suppr超能文献

空气污染对儿童影响的纵向研究:一种稳健的多变量方法。

A longitudinal study of the influence of air pollutants on children: a robust multivariate approach.

作者信息

Meneghel Danilevicz Ian, Bondon Pascal, Anselmo Reisen Valdério, Sarquis Serpa Faradiba

机构信息

Department of Statistics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Laboratoire des signaux et systèmes, CentraleSupélec, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.

出版信息

J Appl Stat. 2023 Oct 30;51(11):2178-2196. doi: 10.1080/02664763.2023.2272228. eCollection 2024.

Abstract

This paper aims to evaluate the statistical association between exposure to air pollution and forced expiratory volume in the first second (FEV) in both asthmatic and non-asthmatic children and teenagers, in which the response variable FEV was repeatedly measured on a monthly basis, characterizing a longitudinal experiment. Due to the nature of the data, an robust linear mixed model (RLMM), combined with a robust principal component analysis (RPCA), is proposed to handle the multicollinearity among the covariates and the impact of extreme observations (high levels of air contaminants) on the estimates. The Huber and Tukey loss functions are considered to obtain robust estimators of the parameters in the linear mixed model (LMM). A finite sample size investigation is conducted under the scenario where the covariates follow linear time series models with and without additive outliers (AO). The impact of the time-correlation and the outliers on the estimates of the fixed effect parameters in the LMM is investigated. In the real data analysis, the robust model strategy evidenced that RPCA exhibits three principal component (PC), mainly related to relative humidity (Hmd), particulate matter with a diameter smaller than 10 μm (PM) and particulate matter with a diameter smaller than 2.5 μm (PM).

摘要

本文旨在评估哮喘和非哮喘儿童及青少年暴露于空气污染与第一秒用力呼气量(FEV)之间的统计关联,其中响应变量FEV每月重复测量一次,这是一个纵向实验。由于数据的性质,提出了一种稳健线性混合模型(RLMM),结合稳健主成分分析(RPCA),以处理协变量之间的多重共线性以及极端观测值(高浓度空气污染物)对估计值的影响。考虑使用Huber和Tukey损失函数来获得线性混合模型(LMM)中参数的稳健估计量。在协变量遵循带有和不带有附加异常值(AO)的线性时间序列模型的情况下进行了有限样本量调查。研究了时间相关性和异常值对LMM中固定效应参数估计值的影响。在实际数据分析中,稳健模型策略表明RPCA呈现出三个主要成分(PC),主要与相对湿度(Hmd)、直径小于10μm的颗粒物(PM)和直径小于2.5μm的颗粒物(PM)有关。

相似文献

本文引用的文献

3
A critical evaluation of the current "p-value controversy".对当前“p值争议”的批判性评估。
Biom J. 2017 Sep;59(5):854-872. doi: 10.1002/bimj.201700001. Epub 2017 May 15.
8
A robust mixed linear model analysis for longitudinal data.一种用于纵向数据的稳健混合线性模型分析。
Stat Med. 2000 Apr 15;19(7):975-87. doi: 10.1002/(sici)1097-0258(20000415)19:7<975::aid-sim381>3.0.co;2-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验