Suppr超能文献

通过联合U-NET囊胚分割和连续延时囊胚图像改进基于深度学习的倍性状态预测算法

Improving Deep Learning-Based Algorithm for Ploidy Status Prediction Through Combined U-NET Blastocyst Segmentation and Sequential Time-Lapse Blastocysts Images.

作者信息

Handayani Nining, Danardono Gunawan Bondan, Boediono Arief, Wiweko Budi, Sini Ivan, Sirait Batara, Polim Arie A, Suheimi Irham, Bowolaksono Anom

机构信息

Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

IRSI Research and Training Centre, Jakarta, Indonesia.

出版信息

J Reprod Infertil. 2024 Apr-Jun;25(2):110-119. doi: 10.18502/jri.v25i2.16006.

Abstract

BACKGROUND

Several approaches have been proposed to optimize the construction of an artificial intelligence-based model for assessing ploidy status. These encompass the investigation of algorithms, refining image segmentation techniques, and discerning essential patterns throughout embryonic development. The purpose of the current study was to evaluate the effectiveness of using U-NET architecture for embryo segmentation and time-lapse embryo image sequence extraction, three and ten before biopsy to improve model accuracy for prediction of embryonic ploidy status.

METHODS

A total of 1.020 time-lapse videos of blastocysts with known ploidy status were used to construct a convolutional neural network (CNN)-based model for ploidy detection. Sequential images of each blastocyst were extracted from the time-lapse videos over a period of three and ten prior to the biopsy, generating 31.642 and 99.324 blastocyst images, respectively. U-NET architecture was applied for blastocyst image segmentation before its implementation in CNN-based model development.

RESULTS

The accuracy of ploidy prediction model without applying the U-NET segmented sequential embryo images was 0.59 and 0.63 over a period of three and ten before biopsy, respectively. Improved model accuracy of 0.61 and 0.66 was achieved, respectively with the implementation of U-NET architecture for embryo segmentation on the current model. Extracting blastocyst images over a 10 period yields higher accuracy compared to a three- extraction period prior to biopsy.

CONCLUSION

Combined implementation of U-NET architecture for blastocyst image segmentation and the sequential compilation of ten of time-lapse blastocyst images could yield a CNN-based model with improved accuracy in predicting ploidy status.

摘要

背景

已经提出了几种方法来优化用于评估倍性状态的基于人工智能的模型的构建。这些方法包括算法研究、改进图像分割技术以及识别胚胎发育过程中的基本模式。本研究的目的是评估使用U-NET架构进行胚胎分割和在活检前三天和十天提取延时胚胎图像序列以提高胚胎倍性状态预测模型准确性的有效性。

方法

总共使用了1020个已知倍性状态的囊胚延时视频来构建基于卷积神经网络(CNN)的倍性检测模型。在活检前三天和十天的时间段内,从延时视频中提取每个囊胚的连续图像,分别生成31642张和99324张囊胚图像。在基于CNN的模型开发中应用U-NET架构进行囊胚图像分割之前,先将其应用于囊胚图像分割。

结果

在活检前三天和十天的时间段内,未应用U-NET分割的连续胚胎图像的倍性预测模型的准确率分别为0.59和0.63。在当前模型上实施用于胚胎分割的U-NET架构后,模型准确率分别提高到了0.61和0.66。与活检前三天的提取期相比,在10天的时间段内提取囊胚图像可获得更高的准确率。

结论

联合实施用于囊胚图像分割的U-NET架构和连续编译十天的囊胚延时图像,可以产生一个在预测倍性状态方面具有更高准确率的基于CNN的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48fb/11327420/79fa5def93ad/JRI-25-110-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验