Suppr超能文献

非侵入性遗传筛查:人工智能在胚胎倍性预测方面的最新进展。

Noninvasive genetic screening: current advances in artificial intelligence for embryo ploidy prediction.

机构信息

Division of Reproductive Endocrinology & Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.

Division of Reproductive Endocrinology & Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.

出版信息

Fertil Steril. 2023 Aug;120(2):228-234. doi: 10.1016/j.fertnstert.2023.06.025. Epub 2023 Jun 30.

Abstract

This review discusses the use of artificial intelligence (AI) algorithms in noninvasive prediction of embryo ploidy status for preimplantation genetic testing in in vitro fertilization procedures. The current gold standard, preimplantation genetic testing for aneuploidy, has limitations, such as an invasive biopsy, financial burden, delays in results reporting, and difficulty in results reporting, Noninvasive ploidy screening methods, including blastocoel fluid sampling, spent media testing, and AI algorithms using embryonic images and clinical parameters, are explored. Various AI models have been developed using different machine learning algorithms, such as random forest classifier and logistic regression, have shown variable performance in predicting euploidy. Static embryo imaging combined with AI algorithms have demonstrated good accuracy in ploidy prediction, with models such as Embryo Ranking Intelligent Classification Algorithm and STORK-A outperforming human grading. Time-lapse embryo imaging analyzed by AI algorithms has also shown promise in predicting ploidy status; however, the inclusion of clinical parameters is crucial to improving the predictive value of these models. Mosaicism, an important aspect of embryo classification, is often overlooked in AI algorithms and should be considered in future studies. The integration of AI algorithms into microscopy equipment and Embryoscope platforms will facilitate noninvasive genetic testing. Further development of algorithms that optimize clinical considerations and incorporate minimal-necessary covariates will also enhance the predictive value of AI in embryo selection. Artificial intelligence-based ploidy prediction has the potential to improve pregnancy rates and reduce costs in in vitro fertilization cycles.

摘要

本文综述了人工智能(AI)算法在体外受精程序中胚胎非整倍体状态预测中的应用。目前的金标准——胚胎植入前遗传学检测(PGT)的非整倍体检测存在一些局限性,如侵袭性活检、经济负担、结果报告延迟以及结果解读困难等。目前正在探索非侵袭性的整倍体筛查方法,包括囊胚腔液采样、培养液检测以及利用胚胎图像和临床参数的 AI 算法。已经开发了各种 AI 模型,这些模型使用了不同的机器学习算法,例如随机森林分类器和逻辑回归,它们在预测整倍体方面的表现各不相同。静态胚胎成像与 AI 算法相结合,在预测整倍体方面表现出了良好的准确性,胚胎分级智能分类算法(Embryo Ranking Intelligent Classification Algorithm)和 STORK-A 等模型的表现优于人工分级。通过 AI 算法分析的时差胚胎成像在预测胚胎整倍体方面也显示出了一定的前景;然而,纳入临床参数对于提高这些模型的预测价值至关重要。AI 算法通常忽略了胚胎分类的一个重要方面——嵌合体,未来的研究应该考虑这一点。将 AI 算法集成到显微镜设备和胚胎培养箱平台中,将有助于进行非侵袭性基因检测。进一步开发优化临床考虑因素并纳入最小必要协变量的算法,也将提高 AI 在胚胎选择中的预测价值。基于人工智能的整倍体预测有可能提高体外受精周期的妊娠率并降低成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验