Suppr超能文献

对神经生理沉浸状态的持续远程监测能够准确预测情绪。

Continuous remote monitoring of neurophysiologic Immersion accurately predicts mood.

作者信息

Merritt Sean H, Zak Paul J

机构信息

Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States.

Center for Neuroeconomics Studies and Drucker School of Management, Claremont Graduate University, Claremont, CA, United States.

出版信息

Front Digit Health. 2024 Aug 2;6:1397557. doi: 10.3389/fdgth.2024.1397557. eCollection 2024.

Abstract

Mental health professionals have relied primarily on clinical evaluations to identify pathology. As a result, mental health is largely reactive rather than proactive. In an effort to proactively assess mood, we collected continuous neurophysiologic data for ambulatory individuals 8-10 h a day at 1 Hz for 3 weeks ( = 24). Data were obtained using a commercial neuroscience platform (Immersion Neuroscience) that quantifies the neural value of social-emotional experiences. These data were related to self-reported mood and energy to assess their predictive accuracy. Statistical analyses quantified neurophysiologic troughs by the length and depth of social-emotional events with low values and neurophysiologic peaks as the complement. Participants in the study had an average of 2.25 (SD = 3.70, Min = 0, Max = 25) neurophysiologic troughs per day and 3.28 (SD = 3.97, Min = 0, Max = 25) peaks. The number of troughs and peaks predicted daily mood with 90% accuracy using least squares regressions and machine learning models. The analysis also showed that women were more prone to low mood compared to men. Our approach demonstrates that a simple count variable derived from a commercially-available platform is a viable way to assess low mood and low energy in populations vulnerable to mood disorders. In addition, peak Immersion events, which are mood-enhancing, may be an effective measure of thriving in adults.

摘要

心理健康专业人员主要依靠临床评估来识别病理状况。因此,心理健康很大程度上是被动反应而非主动预防。为了主动评估情绪,我们收集了动态个体连续的神经生理数据,每天8 - 10小时,频率为1赫兹,共持续3周(n = 24)。数据通过一个商业神经科学平台(Immersion Neuroscience)获取,该平台可量化社会情感体验的神经价值。这些数据与自我报告的情绪和能量相关,以评估其预测准确性。统计分析通过低价值社会情感事件的长度和深度来量化神经生理低谷,以神经生理高峰作为补充。研究参与者每天平均有2.25个(标准差 = 3.70,最小值 = 0,最大值 = 25)神经生理低谷和3.28个(标准差 = 3.97,最小值 = 0,最大值 = 25)高峰。使用最小二乘法回归和机器学习模型,低谷和高峰的数量以90%的准确率预测每日情绪。分析还表明,与男性相比,女性更容易出现情绪低落。我们的方法表明,从一个商业可用平台得出的简单计数变量是评估易患情绪障碍人群中情绪低落和精力不足的一种可行方法。此外,具有情绪增强作用的Immersion事件高峰可能是衡量成年人茁壮成长的有效指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9faa/11327156/b25071132c9c/fdgth-06-1397557-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验