Ramlow Lukas, Lindner Benjamin
<a href="https://ror.org/05ewdps05">Bernstein Center for Computational Neuroscience Berlin</a>, Philippstrasse 13, Haus 2, 10115 Berlin, Germany and Physics Department of <a href="https://ror.org/01hcx6992">Humboldt University Berlin</a>, Newtonstrasse 15, 12489 Berlin, Germany.
Phys Rev E. 2024 Jul;110(1-1):014139. doi: 10.1103/PhysRevE.110.014139.
Stochastic transitions between discrete microscopic states play an important role in many physical and biological systems. Often these transitions lead to fluctuations on a macroscopic scale. A classic example from neuroscience is the stochastic opening and closing of ion channels and the resulting fluctuations in membrane current. When the microscopic transitions are fast, the macroscopic fluctuations are nearly uncorrelated and can be fully characterized by their mean and noise intensity. We show how, for an arbitrary Markov chain, the noise intensity can be determined from an algebraic equation, based on the transition rate matrix; these results are in agreement with earlier results from the theory of zero-frequency noise in quantum mechanical and classical systems. We demonstrate the validity of the theory using an analytically tractable two-state Markovian dichotomous noise, an eight-state model for a calcium channel subunit (De Young-Keizer model), and Markov models of the voltage-gated sodium and potassium channels as they appear in a stochastic version of the Hodgkin-Huxley model.
离散微观状态之间的随机转变在许多物理和生物系统中起着重要作用。这些转变常常会导致宏观尺度上的波动。神经科学中的一个经典例子是离子通道的随机开启和关闭以及由此产生的膜电流波动。当微观转变很快时,宏观波动几乎不相关,并且可以通过其均值和噪声强度来完全表征。我们展示了如何基于转移速率矩阵,从一个代数方程确定任意马尔可夫链的噪声强度;这些结果与量子力学和经典系统中的零频噪声理论的早期结果一致。我们使用一个解析上易于处理的两态马尔可夫二分噪声、一个钙通道亚基的八态模型(德扬 - 凯泽模型)以及霍奇金 - 赫胥黎模型随机版本中出现的电压门控钠通道和钾通道的马尔可夫模型来证明该理论的有效性。