Magnani Christophe, Moore Lee E
Centre Borelli, Université Paris Cité, UMR 9010, CNRS, Paris, France.
Front Neuroinform. 2025 Jan 15;18:1472499. doi: 10.3389/fninf.2024.1472499. eCollection 2024.
This article develops a fundamental insight into the behavior of neuronal membranes, focusing on their responses to stimuli measured with power spectra in the frequency domain. It explores the use of linear and nonlinear (quadratic sinusoidal analysis) approaches to characterize neuronal function. It further delves into the random theory of internal noise of biological neurons and the use of stochastic Markov models to investigate these fluctuations. The text also discusses the origin of conductance noise and compares different power spectra for interpreting this noise. Importantly, it introduces a novel sequential chemical state model, named , which is more general than the Hodgkin-Huxley formulation, so that the probability for an ion channel to be open does not imply exponentiation. In particular, it is demonstrated that the (without exponentiation) and (with exponentiation) models can produce similar neuronal responses. A striking relationship is also shown between fluctuation and quadratic power spectra, suggesting that voltage-dependent random mechanisms can have a significant impact on deterministic nonlinear responses, themselves known to have a crucial role in the generation of action potentials in biological neural networks.
本文深入探讨了神经元膜的行为,重点关注其在频域中通过功率谱测量的对刺激的响应。它探讨了使用线性和非线性(二次正弦分析)方法来表征神经元功能。进一步深入研究了生物神经元内部噪声的随机理论以及使用随机马尔可夫模型来研究这些波动。文本还讨论了电导噪声的起源,并比较了用于解释这种噪声的不同功率谱。重要的是,它引入了一种新颖的顺序化学状态模型,名为 ,该模型比霍奇金 - 赫胥黎公式更通用,因此离子通道打开的概率并不意味着指数关系。特别是,证明了 (无指数关系)和 (有指数关系)模型可以产生相似的神经元反应。还展示了波动与二次功率谱之间的显著关系,表明电压依赖性随机机制可能对确定性非线性响应产生重大影响,而确定性非线性响应本身在生物神经网络中动作电位的产生中起着关键作用。