Suppr超能文献

医疗保健利用是一种混杂因素:电子健康记录数据再利用中的混杂偏倚介绍。

Healthcare utilization is a collider: an introduction to collider bias in EHR data reuse.

机构信息

Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.

Division of Health Science Informatics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

J Am Med Inform Assoc. 2023 Apr 19;30(5):971-977. doi: 10.1093/jamia/ocad013.

Abstract

OBJECTIVES

Collider bias is a common threat to internal validity in clinical research but is rarely mentioned in informatics education or literature. Conditioning on a collider, which is a variable that is the shared causal descendant of an exposure and outcome, may result in spurious associations between the exposure and outcome. Our objective is to introduce readers to collider bias and its corollaries in the retrospective analysis of electronic health record (EHR) data.

TARGET AUDIENCE

Collider bias is likely to arise in the reuse of EHR data, due to data-generating mechanisms and the nature of healthcare access and utilization in the United States. Therefore, this tutorial is aimed at informaticians and other EHR data consumers without a background in epidemiological methods or causal inference.

SCOPE

We focus specifically on problems that may arise from conditioning on forms of healthcare utilization, a common collider that is an implicit selection criterion when one reuses EHR data. Directed acyclic graphs (DAGs) are introduced as a tool for identifying potential sources of bias during study design and planning. References for additional resources on causal inference and DAG construction are provided.

摘要

目的

在临床研究中,混杂偏倚是对内部有效性的常见威胁,但在信息学教育或文献中很少提及。对作为暴露和结局共同因果后裔的混杂因素进行条件分析,可能导致暴露和结局之间出现虚假关联。我们的目的是向读者介绍混杂偏倚及其在电子健康记录 (EHR) 数据回顾性分析中的推论。

目标受众

由于数据生成机制以及美国医疗保健获取和利用的性质,EHR 数据的再利用中可能会出现混杂偏倚。因此,本教程面向没有流行病学方法或因果推断背景的信息学家和其他 EHR 数据使用者。

范围

我们特别关注可能由于对医疗保健利用形式进行条件分析而产生的问题,这是在再利用 EHR 数据时隐含的选择标准。有向无环图 (DAG) 作为一种工具被引入,用于在研究设计和规划阶段识别潜在的偏倚来源。提供了关于因果推断和 DAG 构建的其他资源的参考文献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccec/10114115/a828add06c21/ocad013f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验