Suppr超能文献

一种基于可解释人工智能的血细胞分类方法,采用优化的卷积神经网络。

An explainable AI-based blood cell classification using optimized convolutional neural network.

作者信息

Islam Oahidul, Assaduzzaman Md, Hasan Md Zahid

机构信息

Dept. of EEE, Daffodil International University, Dhaka, Bangladesh.

Health Informatics Research Laboratory (HIRL), Dept. of CSE, Daffodil International University, Dhaka, Bangladesh.

出版信息

J Pathol Inform. 2024 Jul 2;15:100389. doi: 10.1016/j.jpi.2024.100389. eCollection 2024 Dec.

Abstract

White blood cells (WBCs) are a vital component of the immune system. The efficient and precise classification of WBCs is crucial for medical professionals to diagnose diseases accurately. This study presents an enhanced convolutional neural network (CNN) for detecting blood cells with the help of various image pre-processing techniques. Various image pre-processing techniques, such as padding, thresholding, erosion, dilation, and masking, are utilized to minimize noise and improve feature enhancement. Additionally, performance is further enhanced by experimenting with various architectural structures and hyperparameters to optimize the proposed model. A comparative evaluation is conducted to compare the performance of the proposed model with three transfer learning models, including Inception V3, MobileNetV2, and DenseNet201.The results indicate that the proposed model outperforms existing models, achieving a testing accuracy of 99.12%, precision of 99%, and F1-score of 99%. In addition, We utilized SHAP (Shapley Additive explanations) and LIME (Local Interpretable Model-agnostic Explanations) techniques in our study to improve the interpretability of the proposed model, providing valuable insights into how the model makes decisions. Furthermore, the proposed model has been further explained using the Grad-CAM and Grad-CAM++ techniques, which is a class-discriminative localization approach, to improve trust and transparency. Grad-CAM++ performed slightly better than Grad-CAM in identifying the predicted area's location. Finally, the most efficient model has been integrated into an end-to-end (E2E) system, accessible through both web and Android platforms for medical professionals to classify blood cell.

摘要

白细胞(WBCs)是免疫系统的重要组成部分。对白细胞进行高效、精确的分类对于医学专业人员准确诊断疾病至关重要。本研究借助各种图像预处理技术,提出了一种用于检测血细胞的增强卷积神经网络(CNN)。利用了各种图像预处理技术,如填充、阈值处理、腐蚀、膨胀和掩膜,以减少噪声并改善特征增强。此外,通过试验各种架构结构和超参数来优化所提出的模型,进一步提高了性能。进行了一项比较评估,以将所提出模型的性能与三种迁移学习模型(包括Inception V3、MobileNetV2和DenseNet201)进行比较。结果表明,所提出的模型优于现有模型,测试准确率达到99.12%,精确率为99%,F1分数为99%。此外,我们在研究中利用SHAP(Shapley值加法解释)和LIME(局部可解释模型无关解释)技术来提高所提出模型的可解释性,为模型如何做出决策提供了有价值的见解。此外,使用Grad-CAM和Grad-CAM++技术对所提出的模型进行了进一步解释,这是一种类别判别定位方法,以提高可信度和透明度。Grad-CAM++在识别预测区域位置方面比Grad-CAM表现稍好。最后,最有效的模型已集成到一个端到端(E2E)系统中,医学专业人员可通过网络和安卓平台访问该系统来对血细胞进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7541/11332798/19cf68b6a769/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验