Suppr超能文献

使用加权优化的可变形卷积神经网络对白细胞进行分类。

Classification of white blood cells using weighted optimized deformable convolutional neural networks.

机构信息

College of Medical Imaging, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China.

Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.

出版信息

Artif Cells Nanomed Biotechnol. 2021 Dec;49(1):147-155. doi: 10.1080/21691401.2021.1879823.

Abstract

BACKGROUND

Machine learning (ML) algorithms have been widely used in the classification of white blood cells (WBCs). However, the performance of ML algorithms still needs to be addressed for being short of gold standard data sets, and even the implementation of the proposed algorithms.

METHODS

In this study, the method of two-module weighted optimized deformable convolutional neural networks (TWO-DCNN) was proposed for WBC classification. Our algorithm is characterized as two-module transfer learning and deformable convolutional (DC) layers for the betterment of robustness. To validate the performance, our method was compared with classical MLs of VGG16, VGG19, Inception-V3, ResNet-50, support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT) and random forest (RF) on our undisclosed WBC data set and public BCCD data set.

RESULTS

TWO-DCNN achieved the best performance with the precisions (PREs) of 95.7%, 94.5% and 91.6%, recalls (RECs) of 95.7%, 94.5% and 91.6%, F1-scores (F1s) of 95.7%, 94.5% and 91.6%, area under curves (AUCs) of 0.98, 0.97 and 0.95 for low-resolution and noisy undisclosed data sets, BCCD data set, respectively.

CONCLUSIONS

With accurate feature extraction and optimized network weights, the proposed TWO-DCNN showed the best performance in WBC classification for low-resolution and noisy data sets. It could be used as an alternative method for clinical applications.

摘要

背景

机器学习 (ML) 算法已广泛应用于白细胞 (WBC) 的分类。然而,由于缺乏金标准数据集,甚至是所提出算法的实现,ML 算法的性能仍需要进一步研究。

方法

在本研究中,提出了一种用于 WBC 分类的双模块加权优化变形卷积神经网络 (TWO-DCNN) 方法。我们的算法的特点是双模块迁移学习和变形卷积 (DC) 层,以提高鲁棒性。为了验证性能,我们将该方法与经典的 ML 算法 VGG16、VGG19、Inception-V3、ResNet-50、支持向量机 (SVM)、多层感知机 (MLP)、决策树 (DT) 和随机森林 (RF) 进行比较,使用的是我们未公开的 WBC 数据集和公共 BCCD 数据集。

结果

TWO-DCNN 取得了最佳性能,低分辨率和噪声数据集的 PREs 分别为 95.7%、94.5%和 91.6%,RECs 分别为 95.7%、94.5%和 91.6%,F1 分别为 95.7%、94.5%和 91.6%,AUC 分别为 0.98、0.97 和 0.95,BCCD 数据集的 AUC 分别为 0.98、0.97 和 0.95。

结论

通过精确的特征提取和优化的网络权重,所提出的 TWO-DCNN 在低分辨率和噪声数据集的 WBC 分类中表现出最佳性能。它可以作为临床应用的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验