Suppr超能文献

通过结合奇异值分解和不变矩的改进主成分分析实现增强指纹分类

Enhanced fingerprint classification through modified PCA with SVD and invariant moments.

作者信息

Balti Ala, Hamdi Abdelaziz, Abid Sabeur, Ben Khelifa Mohamed Moncef, Sayadi Mounir

机构信息

Research Laboratory SIME, ENSIT, University of Tunis, Tunis, Tunisia.

J-AP2S Laboratory, South University, Toulon, France.

出版信息

Front Artif Intell. 2024 Aug 5;7:1433494. doi: 10.3389/frai.2024.1433494. eCollection 2024.

Abstract

This research introduces a novel MOMENTS-SVD vector for fingerprint identification, combining invariant moments and SVD (Singular Value Decomposition), enhanced by a modified PCA (Principal Component Analysis). Our method extracts unique fingerprint features using SVD and invariant moments, followed by classification with Euclidean distance and neural networks. The MOMENTS-SVD vector reduces computational complexity by outperforming current models. Using the Equal Error Rate (EER) and ROC curve, a comparative study across databases (CASIA V5, FVC 2002, 2004, 2006) assesses our method against ResNet, VGG19, Neuro Fuzzy, DCT Features, and Invariant Moments, proving enhanced accuracy and robustness.

摘要

本研究引入了一种用于指纹识别的新型MOMENTS-SVD向量,它结合了不变矩和奇异值分解(SVD),并通过改进的主成分分析(PCA)进行增强。我们的方法使用SVD和不变矩提取独特的指纹特征,然后通过欧几里得距离和神经网络进行分类。MOMENTS-SVD向量通过优于当前模型降低了计算复杂度。使用等错误率(EER)和ROC曲线,在多个数据库(CASIA V5、FVC 2002、2004、2006)上进行的对比研究将我们的方法与ResNet、VGG19、神经模糊、离散余弦变换特征和不变矩进行了评估,证明了其更高的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a138/11330874/021d2852a180/frai-07-1433494-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验