Suppr超能文献

一种微尺度的人源化呼吸机芯片,用于研究机械通气的损伤作用。

A micro-scale humanized ventilator-on-a-chip to examine the injurious effects of mechanical ventilation.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.

The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State Wexner Medical Center, Columbus, Ohio, USA.

出版信息

Lab Chip. 2024 Sep 10;24(18):4390-4402. doi: 10.1039/d4lc00143e.

Abstract

Patients with compromised respiratory function frequently require mechanical ventilation to survive. Unfortunately, non-uniform ventilation of injured lungs generates complex mechanical forces that lead to ventilator induced lung injury (VILI). Although investigators have developed lung-on-a-chip systems to simulate normal respiration, modeling the complex mechanics of VILI as well as the subsequent recovery phase is a challenge. Here we present a novel humanized ventilator-on-a-chip (VOC) model of the lung microenvironment that simulates the different types of injurious forces generated in the lung during mechanical ventilation. We used transepithelial/endothelial electrical impedance measurements to investigate how individual and simultaneous application of mechanical forces alters real-time changes in barrier integrity during and after injury. We find that compressive stress ( barotrauma) does not significantly alter barrier integrity while over-distention (20% cyclic radial strain, volutrauma) results in decreased barrier integrity that quickly recovers upon removal of mechanical stress. Conversely, surface tension forces generated during airway reopening (atelectrauma), result in a rapid loss of barrier integrity with a delayed recovery relative to volutrauma. Simultaneous application of cyclic stretching (volutrauma) and airway reopening (atelectrauma), indicates that the surface tension forces associated with reopening fluid-occluded lung regions are the primary driver of barrier disruption. Thus, our novel VOC system can monitor the effects of different types of injurious forces on barrier disruption and recovery in real-time and can be used to interogate the biomechanical mechanisms of VILI.

摘要

患有呼吸功能受损的患者经常需要机械通气才能存活。不幸的是,受伤肺部不均匀的通气会产生复杂的机械力,导致呼吸机相关肺损伤(VILI)。尽管研究人员已经开发出了肺芯片系统来模拟正常呼吸,但模拟 VILI 的复杂力学以及随后的恢复阶段是一个挑战。在这里,我们提出了一种新颖的人源化呼吸机芯片(VOC)模型,模拟机械通气过程中肺部产生的不同类型的损伤力。我们使用跨上皮/内皮电阻抗测量来研究机械力的个体和同时应用如何改变损伤过程中和损伤后的屏障完整性的实时变化。我们发现,压缩应力(气压伤)不会显著改变屏障完整性,而过度膨胀(20%循环径向应变,容积伤)会导致屏障完整性降低,在去除机械应力后迅速恢复。相反,在气道再张开期间产生的表面张力力(肺不张伤)会导致屏障完整性迅速丧失,与容积伤相比恢复较慢。同时施加循环拉伸(容积伤)和气道再张开(肺不张伤)表明,与再张开时液体积聚的肺区域相关的表面张力力是屏障破坏的主要驱动因素。因此,我们的新型 VOC 系统可以实时监测不同类型的损伤力对屏障破坏和恢复的影响,并可用于探究 VILI 的生物力学机制。

相似文献

10
Positioning for acute respiratory distress in hospitalised infants and children.急性呼吸窘迫患儿的体位摆放。
Cochrane Database Syst Rev. 2022 Jun 6;6(6):CD003645. doi: 10.1002/14651858.CD003645.pub4.

本文引用的文献

4
3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes.基于仿生微弯曲培养膜的 3D 肺芯片模型。
ACS Biomater Sci Eng. 2022 Jun 13;8(6):2684-2699. doi: 10.1021/acsbiomaterials.1c01463. Epub 2022 May 3.
7
Reversed-engineered human alveolar lung-on-a-chip model.反向工程化的人肺泡肺芯片模型。
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2016146118.
10
Cross-platform mechanical characterization of lung tissue.跨平台的肺组织力学特性研究。
PLoS One. 2018 Oct 17;13(10):e0204765. doi: 10.1371/journal.pone.0204765. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验