Suppr超能文献

基于加权 p 值的异质数据病变-症状映射的假发现率控制。

False Discovery Rate Control for Lesion-Symptom Mapping With Heterogeneous Data via Weighted p-Values.

机构信息

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA.

Department of Statistics, Oklahoma State University, Stillwater, Oklahoma, USA.

出版信息

Biom J. 2024 Sep;66(6):e202300198. doi: 10.1002/bimj.202300198.

Abstract

Lesion-symptom mapping studies provide insight into what areas of the brain are involved in different aspects of cognition. This is commonly done via behavioral testing in patients with a naturally occurring brain injury or lesions (e.g., strokes or brain tumors). This results in high-dimensional observational data where lesion status (present/absent) is nonuniformly distributed, with some voxels having lesions in very few (or no) subjects. In this situation, mass univariate hypothesis tests have severe power heterogeneity where many tests are known a priori to have little to no power. Recent advancements in multiple testing methodologies allow researchers to weigh hypotheses according to side information (e.g., information on power heterogeneity). In this paper, we propose the use of p-value weighting for voxel-based lesion-symptom mapping studies. The weights are created using the distribution of lesion status and spatial information to estimate different non-null prior probabilities for each hypothesis test through some common approaches. We provide a monotone minimum weight criterion, which requires minimum a priori power information. Our methods are demonstrated on dependent simulated data and an aphasia study investigating which regions of the brain are associated with the severity of language impairment among stroke survivors. The results demonstrate that the proposed methods have robust error control and can increase power. Further, we showcase how weights can be used to identify regions that are inconclusive due to lack of power.

摘要

病灶-症状映射研究提供了对大脑不同认知方面涉及的区域的深入了解。这通常是通过对患有自然发生的脑损伤或病变的患者进行行为测试来完成的(例如,中风或脑肿瘤)。这会导致高维观测数据,其中病灶状态(存在/不存在)分布不均匀,有些体素在极少数(或没有)受试者中存在病灶。在这种情况下,大量的单变量假设检验具有严重的功效异质性,其中许多检验事先已知几乎没有功效。最近在多重检验方法学方面的进展使研究人员能够根据辅助信息(例如,功效异质性的信息)对假设进行加权。在本文中,我们提出了在基于体素的病灶-症状映射研究中使用 p 值加权的方法。这些权重是使用病灶状态和空间信息的分布创建的,通过一些常见的方法为每个假设检验估计不同的非零先验概率。我们提供了一个单调最小权重准则,该准则需要最小的先验功效信息。我们的方法在依赖模拟数据和一项针对失语症的研究中得到了验证,该研究旨在调查大脑中哪些区域与中风幸存者语言障碍的严重程度相关。结果表明,所提出的方法具有稳健的误差控制能力,并可以提高功效。此外,我们展示了如何使用权重来识别由于缺乏功效而不确定的区域。

相似文献

本文引用的文献

1
Weighted False Discovery Rate Control in Large-Scale Multiple Testing.大规模多重检验中的加权错误发现率控制
J Am Stat Assoc. 2018;113(523):1172-1183. doi: 10.1080/01621459.2017.1336443. Epub 2018 Jun 12.
4
Mapping human brain lesions and their functional consequences.绘制人类大脑损伤及其功能后果图谱。
Neuroimage. 2018 Jan 15;165:180-189. doi: 10.1016/j.neuroimage.2017.10.028. Epub 2017 Oct 16.
5
Weighted false discovery rate controlling procedures for clinical trials.用于临床试验的加权错误发现率控制程序。
Biostatistics. 2017 Jan;18(1):91-104. doi: 10.1093/biostatistics/kxw030. Epub 2016 Jul 21.
9
Age-specific CT and MRI templates for spatial normalization.特定年龄的 CT 和 MRI 模板用于空间标准化。
Neuroimage. 2012 Jul 16;61(4):957-65. doi: 10.1016/j.neuroimage.2012.03.020. Epub 2012 Mar 13.
10
False Discovery Rate Control With Groups.分组情况下的错误发现率控制
J Am Stat Assoc. 2010 Sep 1;105(491):1215-1227. doi: 10.1198/jasa.2010.tm09329.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验