Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
Microb Biotechnol. 2024 Aug;17(8):e14552. doi: 10.1111/1751-7915.14552.
Petroleum-based plastics levy significant environmental and economic costs that can be alleviated with sustainably sourced, biodegradable, and bio-based polymers such as polyhydroxyalkanoates (PHAs). However, industrial-scale production of PHAs faces barriers stemming from insufficient product yields and high costs. To address these challenges, we must look beyond the current suite of microbes for PHA production and investigate non-model organisms with versatile metabolisms. In that vein, we assessed PHA production by the photosynthetic purple non-sulfur bacteria (PNSB) Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species accumulate PHA across photo-heterotrophic, photo-hydrogenotrophic, photo-ferrotrophic, and photo-electrotrophic growth conditions, with either ammonium chloride (NHCl) or dinitrogen gas (N) as nitrogen sources. Our data indicate that nitrogen source plays a significant role in dictating PHA synthesis, with N fixation promoting PHA production during photoheterotrophy and photoelectrotrophy but inhibiting production during photohydrogenotrophy and photoferrotrophy. We observed the highest PHA titres (up to 44.08 mg/L, or 43.61% cell dry weight) when cells were grown photoheterotrophically on sodium butyrate with N, while production was at its lowest during photoelectrotrophy (as low as 0.04 mg/L, or 0.16% cell dry weight). We also find that photohydrogenotrophically grown cells supplemented with NHCl exhibit the highest electron yields - up to 58.89% - while photoheterotrophy demonstrated the lowest (0.27%-1.39%). Finally, we highlight superior electron conversion and PHA production compared to a related PNSB, Rhodopseudomonas palustris TIE-1. This study illustrates the value of studying non-model organisms like Rhodomicrobium for sustainable PHA production and indicates future directions for exploring PNSB metabolisms.
基于石油的塑料会产生重大的环境和经济成本,可以通过可持续来源的、可生物降解的和基于生物的聚合物来缓解,例如聚羟基烷酸酯(PHA)。然而,PHA 的工业规模生产面临着产品产量不足和成本高的障碍。为了解决这些挑战,我们必须超越当前生产 PHA 的微生物组合,研究具有多功能代谢途径的非模式生物。在这方面,我们评估了光合紫色非硫细菌(PNSB)Rhodomicrobium vannielii 和 Rhodomicrobium udaipurense 生产 PHA 的能力。我们表明,这两个物种在光异养、光氢营养、光铁营养和光电营养生长条件下都能积累 PHA,氮源可以是氯化铵(NHCl)或氮气(N)。我们的数据表明,氮源在决定 PHA 合成方面起着重要作用,固氮促进光异养和光电营养过程中的 PHA 生产,但抑制光氢营养和光铁营养过程中的生产。当细胞在含有 N 的丁酸钠上光异养生长时,我们观察到最高的 PHA 浓度(高达 44.08mg/L,或 43.61%细胞干重),而在光电营养过程中产量最低(低至 0.04mg/L,或 0.16%细胞干重)。我们还发现,用 NHCl 补充的光氢营养生长细胞表现出最高的电子产率-高达 58.89%-而光异养则表现出最低的电子产率(0.27%-1.39%)。最后,我们强调了与相关 PNSB Rhodopseudomonas palustris TIE-1 相比,电子转化率和 PHA 生产能力更高。这项研究说明了研究像 Rhodomicrobium 这样的非模式生物在可持续 PHA 生产中的价值,并指出了探索 PNSB 代谢途径的未来方向。