Dziuba Marina V, Müller Frank-Dietrich, Pósfai Mihály, Schüler Dirk
Department of Microbiology, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, Bayreuth, Germany.
ELKH-PE Environmental Mineralogy Research Group, Veszprém, Hungary.
Nat Nanotechnol. 2024 Jan;19(1):115-123. doi: 10.1038/s41565-023-01500-5. Epub 2023 Sep 21.
Magnetosomes produced by magnetotactic bacteria have great potential for application in biotechnology and medicine due to their unique physicochemical properties and high biocompatibility. Attempts to transfer the genes for magnetosome biosynthesis into non-magnetic organisms have had mixed results. Here we report on a systematic study to identify key components needed for magnetosome biosynthesis after gene transfer. We transfer magnetosome genes to 25 proteobacterial hosts, generating seven new magnetosome-producing strains. We characterize the recombinant magnetosomes produced by these strains and demonstrate that denitrification and anaerobic photosynthesis are linked to the ability to synthesize magnetosomes upon the gene transfer. In addition, we show that the number of magnetosomes synthesized by a foreign host negatively correlates with the guanine-cytosine content difference between the host and the gene donor. Our findings have profound implications for the generation of magnetized living cells and the potential for transgenic biogenic magnetic nanoparticle production.
趋磁细菌产生的磁小体因其独特的物理化学性质和高生物相容性,在生物技术和医学领域具有巨大的应用潜力。将磁小体生物合成基因转移到非磁性生物中的尝试取得了喜忧参半的结果。在此,我们报告一项系统性研究,以确定基因转移后磁小体生物合成所需的关键成分。我们将磁小体基因转移到25种变形菌宿主中,产生了7种新的产磁小体菌株。我们对这些菌株产生的重组磁小体进行了表征,并证明反硝化作用和厌氧光合作用与基因转移后合成磁小体的能力相关。此外,我们表明外源宿主合成的磁小体数量与宿主和基因供体之间的鸟嘌呤 - 胞嘧啶含量差异呈负相关。我们的研究结果对磁化活细胞的产生以及转基因生物源磁性纳米颗粒生产的潜力具有深远意义。