Suppr超能文献

按需变硬和变软的水凝胶生物材料表明,骨骼肌干细胞具有机械记忆。

Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory.

机构信息

Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA 94305.

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2406787121. doi: 10.1073/pnas.2406787121. Epub 2024 Aug 20.

Abstract

Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.

摘要

肌肉干细胞(MuSCs)是存在于成年骨骼肌中的一种特化细胞,能够修复肌肉组织。随着年龄的增长和肌肉营养不良等疾病的发生,MuSCs 再生受损组织的能力显著下降,但 MuSC 功能障碍的根本原因仍不清楚。衰老和疾病都会导致肌肉组织微环境的纤维化,使组织硬度显著增加。已知 MuSCs 在硬塑料基质上培养时会失去其再生潜能。我们试图确定 MuSCs 是否具有对其过去微环境的记忆,如果可以克服这种记忆。我们使用动态水凝胶生物材料在原位测试 MuSCs,这些材料可以根据光的需求进行软化或硬化,结果发现新鲜分离的 MuSCs 在硬基质上培养的头三天内会形成对基质硬度的持久记忆,表现为增殖祖细胞的丧失。与在硬水凝胶上培养的 MuSCs 相比,在软水凝胶上培养的 MuSCs 的细胞骨架组织和 Rho 和 Rac 鸟苷三磷酸水解酶(GTPase)以及 Yes 相关蛋白机械转导途径的活性发生改变。药理抑制鉴定出 RhoA 的激活是机械记忆表型的原因,单细胞 RNA 测序揭示了机械记忆的分子特征。这些研究表明,微环境硬度调节 MuSC 命运,并导致 MuSC 功能障碍,而通过改变硬度很难逆转这种功能障碍。我们的结果表明,可以通过靶向下游信号通路来绕过硬度,从而克服在纤维化组织力学异常的衰老和疾病状态下的干细胞功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/265e/11363279/c0873d2a565a/pnas.2406787121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验