Max Planck Institute for Marine Microbiology, Bremen, Germany.
Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae165.
Hydrothermal vent systems release reduced chemical compounds that act as an important energy source in the deep sea. Chemolithoautotrophic microbes inhabiting hydrothermal plumes oxidize these compounds, in particular, hydrogen and reduced sulfur, to obtain the energy required for CO2 fixation. Here, we analysed the planktonic communities of four hydrothermal systems located along the Mid-Atlantic Ridge: Irinovskoe, Semenov-2, Logatchev-1, and Ashadze-2, by combining long-read 16S rRNA gene analysis, fluorescence in situ hybridization, meta-omics, and thermodynamic calculations. Sulfurimonas and SUP05 dominated the microbial communities in these hydrothermal plumes. Investigation of Sulfurimonas and SUP05 MAGs, and their gene transcription in plumes indicated a niche partitioning driven by hydrogen and sulfur. In addition to sulfur and hydrogen oxidation, a novel SAR202 clade inhabiting the plume, here referred to as genus Carboxydicoccus, harbours the capability for CO oxidation and CO2 fixation via reverse TCA cycle. Both pathways were also highly transcribed in other hydrogen-rich plumes, including the Von Damm vent field. Carboxydicoccus profundi reached up to 4% relative abundance (1.0 x 103 cell ml- 1) in Irinovskoe non-buoyant plume and was also abundant in non-hydrothermally influenced deep-sea metagenomes (up to 5 RPKM). Therefore, CO, which is probably not sourced from the hydrothermal fluids (1.9-5.8 μM), but rather from biological activities within the rising fluid, may serve as a significant energy source in hydrothermal plumes. Taken together, this study sheds light on the chemolithoautotrophic potential of the bacterial community in Mid-Atlantic Ridge plumes.
热液喷口系统释放出还原化合物,这些化合物在深海中充当重要的能量来源。栖息在热液羽流中的化能自养微生物氧化这些化合物,特别是氢气和还原硫,以获取固定 CO2 所需的能量。在这里,我们通过结合长读 16S rRNA 基因分析、荧光原位杂交、宏基因组学和热力学计算,分析了中大西洋脊沿线的四个热液系统(Irinovskoe、Semenov-2、Logatchev-1 和 Ashadze-2)的浮游生物群落。硫单胞菌属和 SUP05 是这些热液羽流中微生物群落的优势菌属。对硫单胞菌属和 SUP05 MAGs 的研究及其在羽流中的基因转录表明,氢和硫的驱动下存在生态位分化。除了硫和氢气的氧化作用外,栖息在羽流中的一个新型 SAR202 分支,在这里称为羧基球菌属,具有通过反向三羧酸循环氧化 CO 和固定 CO2 的能力。这两种途径在包括 Von Damm 喷口场在内的其他富含氢气的羽流中也有高度转录。深海底栖微生物组中也有大量的转录(高达 5 RPKM)。因此,CO 可能不是来自热液流体(1.9-5.8 μM),而是来自上升流体中的生物活动,可能是热液羽流中的重要能量来源。总之,这项研究揭示了中大西洋脊羽流中细菌群落的化能自养潜力。