Suppr超能文献

利用扫描电子显微镜中基于孔径的暗场扫描透射电子显微镜对二维材料中的扩展缺陷进行表征。

Characterization of extended defects in 2D materials using aperture-based dark-field STEM in SEM.

作者信息

Denninger Peter, Schweizer Peter, Spiecker Erdmann

机构信息

Institute of Micro, and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, Erlangen 91058, Germany.

Institute of Micro, and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, Erlangen 91058, Germany.

出版信息

Micron. 2024 Nov;186:103703. doi: 10.1016/j.micron.2024.103703. Epub 2024 Aug 14.

Abstract

Quantitative diffraction contrast analysis with defined diffraction vectors is a well-established method in TEM for studying defects in crystalline materials. A comparable transmission technique is however not available in the more widely used SEM platforms. In this work, we transfer the aperture-based dark-field imaging method from the TEM to the SEM, thus enabling quantitative diffraction contrast studies at lower voltages in SEM. This is achieved in STEM mode by inserting a custom-made aperture between the sample and the STEM detector and centering the hole on a desired reflection. To select individual reflections for dark-field imaging, we use our Low Energy Nanodiffraction (LEND) setup [Schweizer et al., Ultramicroscopy 213, 112956 (2020)], which captures transmission diffraction patterns from a fluorescent screen positioned below the sample. The aperture-based dark-field STEM method is particularly useful for studying extended defects in 2D materials, where (i) stronger diffraction at the lower voltages used in SEM is advantageous, but (ii) two-beam conditions cannot be established, making quantitative diffraction contrast analysis with standard bright-field and annular dark-field detectors impossible. We demonstrate the method by studying basal plane dislocations in bilayer graphene, which have attracted considerable research interest due to their exceptional structural and electronic properties. Direct comparison of results obtained on identical dislocations by the established TEM method and by the new aperture-based dark-field STEM method in SEM shows that a reliable Burgers vector analysis is possible by applying the well-known g·b=0 invisibility criterion. We further use the LEND setup to acquire 4D-STEM data and show that the virtual dark-field images match well with those in aperture-based dark-field STEM images for reliable Burgers vector analysis.

摘要

使用定义好的衍射矢量进行定量衍射衬度分析是透射电子显微镜(TEM)中研究晶体材料缺陷的一种成熟方法。然而,在应用更为广泛的扫描电子显微镜(SEM)平台中,却没有类似的透射技术。在这项工作中,我们将基于孔径的暗场成像方法从TEM转移到SEM,从而能够在SEM的较低电压下进行定量衍射衬度研究。这是通过在STEM模式下,在样品和STEM探测器之间插入一个定制的孔径,并将孔对准所需的反射来实现的。为了选择用于暗场成像的单个反射,我们使用了我们的低能纳米衍射(LEND)装置[施韦泽等人,《超微结构》213, 112956 (2020)],该装置从位于样品下方的荧光屏捕获透射衍射图案。基于孔径的暗场STEM方法对于研究二维材料中的扩展缺陷特别有用,其中:(i)在SEM中使用的较低电压下更强的衍射是有利的,但(ii)无法建立双束条件,使得使用标准明场和环形暗场探测器进行定量衍射衬度分析变得不可能。我们通过研究双层石墨烯中的基面位错来演示该方法,由于其特殊的结构和电子特性,双层石墨烯吸引了相当多的研究兴趣。通过已有的TEM方法和SEM中新的基于孔径的暗场STEM方法对相同位错获得的结果进行直接比较表明,应用著名的g·b = 0不可见性准则可以进行可靠的伯格斯矢量分析。我们进一步使用LEND装置获取4D-STEM数据,并表明虚拟暗场图像与基于孔径的暗场STEM图像中的图像非常匹配,可用于可靠的伯格斯矢量分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验