Suppr超能文献

重症患者美罗培南的基于生理的药代动力学/药效学模型。

Physiologically-based pharmacokinetic/pharmacodynamic modeling of meropenem in critically ill patients.

机构信息

Department of Pharmacy, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China.

Department of Intensive Care Unit, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China.

出版信息

Sci Rep. 2024 Aug 20;14(1):19269. doi: 10.1038/s41598-024-64223-0.

Abstract

This study aimed to develop a physiologically based pharmacokinetic/pharmacodynamic model (PBPK/PD) of meropenem for critically ill patients. A PBPK model of meropenem in healthy adults was established using PK-Sim software and subsequently extrapolated to critically ill patients based on anatomic and physiological parameters. The mean fold error (MFE) and geometric mean fold error (GMFE) methods were used to compare the differences between predicted and observed values of pharmacokinetic parameters C, AUC, and CL to evaluate the accuracy of the PBPK model. The model was verified using meropenem plasma samples obtained from Intensive Care Unit (ICU) patients, which were determined by HPLC-MS/MS. After that, the PBPK model was combined with a PKPD model, which was developed based on f%T > MIC. Monte Carlo simulation was utilized to calculate the probability of target attainment (PTA) in patients. The developed PBPK model successfully predicted the meropenem disposition in critically ill patients, wherein the MFE average and GMFE of all predicted PK parameters were within the 1.25-fold error range. The therapeutic drug monitoring (TDM) of meropenem was conducted with 92 blood samples from 31 ICU patients, of which 71 (77.17%) blood samples were consistent with the simulated value. The TDM results showed that meropenem PBPK modeling is well simulated in critically ill patients. Monte Carlo simulations showed that extended infusion and frequent administration were necessary to achieve curative effect for critically ill patients, whereas excessive infusion time (> 4 h) was unnecessary. The PBPK/PD modeling incorporating literature and prospective study data can predict meropenem pharmacokinetics in critically ill patients correctly. Our study provides a reference for dose adjustment in critically ill patients.

摘要

本研究旨在开发一种用于重症患者的美罗培南基于生理的药代动力学/药效动力学模型(PBPK/PD)。使用 PK-Sim 软件建立了健康成年人美罗培南的 PBPK 模型,然后根据解剖学和生理学参数外推至重症患者。采用平均倍数误差(MFE)和几何平均倍数误差(GMFE)方法比较药代动力学参数 C、AUC 和 CL 的预测值与观察值之间的差异,以评估 PBPK 模型的准确性。使用来自重症监护病房(ICU)患者的美罗培南血浆样本通过 HPLC-MS/MS 对模型进行验证。然后,将 PBPK 模型与基于 f%T > MIC 的 PKPD 模型相结合。利用蒙特卡罗模拟计算患者的目标达标概率(PTA)。所开发的 PBPK 模型成功预测了美罗培南在重症患者中的分布情况,其中所有预测 PK 参数的 MFE 平均值和 GMFE 均在 1.25 倍误差范围内。对 31 例 ICU 患者的 92 份血样进行了美罗培南治疗药物监测(TDM),其中 71 份(77.17%)血样与模拟值一致。TDM 结果表明,美罗培南 PBPK 模型在重症患者中得到了很好的模拟。蒙特卡罗模拟表明,对于重症患者,需要延长输注和频繁给药以达到疗效,而不必要输注过长时间(>4 小时)。结合文献和前瞻性研究数据的 PBPK/PD 建模可以正确预测美罗培南在重症患者中的药代动力学。本研究为重症患者的剂量调整提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/829f/11335869/f6b180fe03bd/41598_2024_64223_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验