Suppr超能文献

一种基于人工智能的利用维度阿基米德优化的自动白血病分类系统。

An AI-based automatic leukemia classification system utilizing dimensional Archimedes optimization.

作者信息

Shaban Warda M

机构信息

Department Communication and Electronics Engineering, Nile Higher Institute for Engineering and Technology, Mansoura, Egypt.

Faculty of Artificial Intelligence and Informatics, Horus University, New Damietta, Egypt.

出版信息

Sci Rep. 2025 May 16;15(1):17091. doi: 10.1038/s41598-025-98400-6.

Abstract

Leukemia is a common type of blood cancer marked by the abnormal and uncontrolled proliferation and expansion of white blood cells. This anomaly impacts the blood and bone marrow, diminishing the bone marrow's capacity to generate platelets and red blood cells. Abnormal red blood cells in the bloodstream harm various organs, such as the kidneys, liver, and spleen. Detection and classification of infected patients at an early stage can save their lives. In this paper, a new Artificial Intelligence (AI) system is proposed. The proposed system is called Leukemia Classification System (LCS). The proposed LCS composed of five stages, which are; (i) Image Processing Stage (IPS), (ii) Image Segmentation Stage (ISS), (iii) Feature Extraction Stage (FES), (iv) Feature Selection Stage (FSS), and (v) Classification Stage (CS). During IPS, the input images are preprocessed through several processes: resizing, enhancement, and filtering. Next, the preprocessed images are segmented through ISS. Then, two types of features, texture and morphological features, are extracted. We feed these extracted features to FSS, which uses a proposed method to select the most important and effective features. The proposed method is called the Dimensional Archimedes Optimization Algorithm (DAOA). DAOA is based on the Archimedes Optimization Algorithm (AOA) and Dimensional Learning Strategy (DLS). Actually, DLS transmits valuable information about the ideal position of the population in every generation to the personal best position of each individual particle. This improves both the precision and efficiency of convergence while reducing the likelihood of the "two steps forward, one step back" phenomenon. This problem offers a more precise solution. Finally, these selected features are fed to the proposed classification model. Experimental results show that the proposed LCS outperforms the others.

摘要

白血病是一种常见的血癌,其特征是白细胞异常且不受控制地增殖和扩张。这种异常会影响血液和骨髓,降低骨髓生成血小板和红细胞的能力。血液中异常的红细胞会损害肾脏、肝脏和脾脏等各种器官。早期检测和分类感染患者可以挽救他们的生命。本文提出了一种新的人工智能(AI)系统。该系统称为白血病分类系统(LCS)。所提出的LCS由五个阶段组成,即:(i)图像处理阶段(IPS),(ii)图像分割阶段(ISS),(iii)特征提取阶段(FES),(iv)特征选择阶段(FSS),以及(v)分类阶段(CS)。在IPS阶段,输入图像通过几个过程进行预处理:调整大小、增强和滤波。接下来,通过ISS对预处理后的图像进行分割。然后,提取纹理和形态特征这两种特征。我们将这些提取的特征输入到FSS,FSS使用一种提出的方法来选择最重要和有效的特征。所提出的方法称为维度阿基米德优化算法(DAOA)。DAOA基于阿基米德优化算法(AOA)和维度学习策略(DLS)。实际上,DLS将关于每一代种群理想位置的有价值信息传递给每个个体粒子的个人最佳位置。这提高了收敛的精度和效率,同时降低了“两步前进,一步后退”现象的可能性。这个问题提供了一个更精确的解决方案。最后,将这些选择的特征输入到所提出的分类模型中。实验结果表明,所提出的LCS优于其他系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fb/12084586/f4652e32a766/41598_2025_98400_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验