Suppr超能文献

借助人工智能通过多参数流式细胞术诊断急性白血病

Diagnosis of Acute Leukemia by Multiparameter Flow Cytometry with the Assistance of Artificial Intelligence.

作者信息

Zhong Pengqiang, Hong Mengzhi, He Huanyu, Zhang Jiang, Chen Yaoming, Wang Zhigang, Chen Peisong, Ouyang Juan

机构信息

Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.

Deepcyto LLC, 2304 Falcon Drive, West Linn, OR 97068, USA.

出版信息

Diagnostics (Basel). 2022 Mar 28;12(4):827. doi: 10.3390/diagnostics12040827.

Abstract

We developed an artificial intelligence (AI) model that evaluates the feasibility of AI-assisted multiparameter flow cytometry (MFC) diagnosis of acute leukemia. Two hundred acute leukemia patients and 94 patients with cytopenia(s) or hematocytosis were selected to study the AI application in MFC diagnosis of acute leukemia. The kappa test analyzed the consistency of the diagnostic results and the immunophenotype of acute leukemia. Bland-Altman and Pearson analyses evaluated the consistency and correlation of the abnormal cell proportion between the AI and manual methods. The AI analysis time for each case (83.72 ± 23.90 s, mean ± SD) was significantly shorter than the average time for manual analysis (15.64 ± 7.16 min, mean ± SD). The total consistency of diagnostic results was 0.976 (kappa (κ) = 0.963). The Bland-Altman evaluation of the abnormal cell proportion between the AI analysis and manual analysis showed that the bias ± SD was 0.752 ± 6.646, and the 95% limit of agreement was from -12.775 to 13.779 ( = 0.1225). The total consistency of the AI immunophenotypic diagnosis and the manual results was 0.889 (kappa, 0.775). The consistency and speedup of the AI-assisted workflow indicate its promising clinical application.

摘要

我们开发了一种人工智能(AI)模型,用于评估人工智能辅助多参数流式细胞术(MFC)诊断急性白血病的可行性。选取了200例急性白血病患者以及94例血细胞减少或血细胞增多患者,以研究人工智能在急性白血病MFC诊断中的应用。kappa检验分析了急性白血病诊断结果与免疫表型的一致性。Bland-Altman分析和Pearson分析评估了人工智能方法与手工方法之间异常细胞比例的一致性和相关性。每例的人工智能分析时间(83.72±23.90秒,平均值±标准差)显著短于手工分析的平均时间(15.64±7.16分钟,平均值±标准差)。诊断结果的总体一致性为0.976(kappa(κ)=0.963)。人工智能分析与手工分析之间异常细胞比例的Bland-Altman评估显示,偏差±标准差为0.752±6.646,95%一致性界限为-12.775至13.779(=0.1225)。人工智能免疫表型诊断与手工结果的总体一致性为0.889(kappa,0.775)。人工智能辅助工作流程的一致性和加速性表明其具有良好的临床应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ee/9029950/d877275a9da2/diagnostics-12-00827-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验