Suppr超能文献

基于空间频域成像与RL-SVM相结合的大豆种子害虫损伤检测方法

Soybean seed pest damage detection method based on spatial frequency domain imaging combined with RL-SVM.

作者信息

Chen Xuanyu, He Wei, Ye Zhihao, Gai Junyi, Lu Wei, Xing Guangnan

机构信息

College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China.

College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.

出版信息

Plant Methods. 2024 Aug 20;20(1):130. doi: 10.1186/s13007-024-01257-5.

Abstract

Soybean seeds are susceptible to damage from the Riptortus pedestris, which is a significant factor affecting the quality of soybean seeds. Currently, manual screening methods for soybean seeds are limited to visual inspection, making it difficult to identify seeds that are phenotypically defect-free but have been punctured by stink bugs on the sub-surface. To facilitate the convenient and efficient identification of healthy soybean seeds, this paper proposes a soybean seed pest detection method based on spatial frequency domain imaging combined with RL-SVM. Firstly, soybean optical data is obtained using single integration sphere technique, and the vigor index of soybean seeds is obtained through germination experiments. Then, based on the above two data items using feature extraction algorithms (the successive projections algorithm and the competitive adaptive reweighted sampling algorithm), the characteristic wavelengths of soybeans are identified. Subsequently, the spatial frequency domain imaging technique is used to obtain the sub-surface images of soybean seeds in a forward manner, and the optical coefficients such as the reduced scattering coefficient and absorption coefficient of soybean seeds are inverted. Finally, RL-MLR, RL-GRNN, and RL-SVM prediction models are established based on the ratio of the area of insect-damaged sub-surface to the entire seed, soybean varieties, and at three wavelengths (502 nm, 813 nm, and 712 nm) for predicting and identifying soybean the stinging and sucking pest damage levels of soybean seeds. The experimental results show that the spatial frequency domain imaging technique yields small errors in the optical coefficients of soybean seeds, with errors of less than 15% for and less than 10% for . After parameter adjustment through reinforcement learning, the Macro-Recall metrics of each model have improved by 10%-15%, and the RL-SVM model achieves a high Macro-Recall value of 0.9635 for classifying the pest damage levels of soybean seeds.

摘要

豆天蛾会对大豆种子造成损害,这是影响大豆种子质量的一个重要因素。目前,大豆种子的人工筛选方法仅限于目视检查,难以识别表型无缺陷但已被椿象在种子次表面穿刺的种子。为了便于方便、高效地识别健康的大豆种子,本文提出了一种基于空间频域成像结合强化学习支持向量机的大豆种子害虫检测方法。首先,利用单积分球技术获取大豆光学数据,并通过发芽实验获得大豆种子的活力指数。然后,基于上述两项数据,使用特征提取算法(连续投影算法和竞争性自适应重加权采样算法)识别大豆的特征波长。随后,利用空间频域成像技术正向前获取大豆种子的次表面图像,并反演大豆种子的光学系数,如约化散射系数和吸收系数。最后,基于虫害损伤次表面面积与整个种子面积的比值、大豆品种以及三个波长(502nm、813nm和712nm)下的光学系数,建立强化学习多元线性回归、强化学习广义回归神经网络和强化学习支持向量机预测模型,用于预测和识别大豆种子的刺吸式害虫损伤水平。实验结果表明,空间频域成像技术在大豆种子光学系数上的误差较小,约化散射系数的误差小于15%,吸收系数的误差小于10%。通过强化学习进行参数调整后,各模型的宏召回率指标提高了10%-15%,强化学习支持向量机模型在大豆种子虫害损伤水平分类中达到了0.9635的高宏召回率值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/219a/11337654/7042e48b69b7/13007_2024_1257_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验