Suppr超能文献

基于人工智能生成内容和优化驱动重叠社区检测的小麦条锈病种植适宜性评估:农业群体共识框架

Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection.

作者信息

Xu Tingyu, Cui Haowei, Song Yunsheng, Zhang Chao, Alghamdi Turki, Aborokbah Majed

机构信息

School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China.

College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China.

出版信息

Plants (Basel). 2025 Jun 11;14(12):1794. doi: 10.3390/plants14121794.

Abstract

Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists' judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists' scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists' social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses.

摘要

植物建模使用数学和计算方法来模拟植物结构、生理过程以及与各种环境的相互作用。在精准农业中,它能够对作物生长进行数字监测和预测,有助于更好地管理和高效利用资源。小麦作为全球主要的主食作物,对粮食安全至关重要。然而,小麦条锈病作为一种广泛传播且具有破坏性的病害,威胁着产量的稳定性。本文提出了一种基于农业群体共识框架(WCSE - AGC)的小麦条锈病种植适宜性评估方法来解决这一问题。评估地区条锈病严重程度依赖于小麦病理学家基于多种标准的判断,这就产生了一个多属性、多决策者的共识问题。有限的区域覆盖范围以及小麦病理学家之间评估的不一致使得达成共识变得复杂。为了支持小麦病理学家的参与,本研究通过使用Claude 3.7采用人工智能生成内容(AIGC)技术,通过角色扮演和思维链提示来模拟小麦病理学家的评分。WCSE - AGC包括三个主要阶段。首先,一个图神经网络(GNN)对小麦病理学家社交网络中的信任传播进行建模,完成缺失的信任链接,并为加权和聚类提供坚实基础。这确保了可靠的专家影响力估计。其次,整合秘书鸟优化(SBO)、K均值和三元聚类来检测重叠的小麦病理学家子群体,减少意见分歧,提高共识的包容性和收敛性。第三,一个两阶段优化平衡了群体公平性和调整成本,增强了共识的实用性和可接受性。本文使用来自埃塞俄比亚、印度、土耳其和中国四个不同地点的公开可用真实小麦条锈病数据集进行实验,并通过比较分析和敏感性分析验证了该框架的有效性和稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17d1/12197111/27de2013b70a/plants-14-01794-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验