Kim Sungjoon, Ji Hyeonseung, Park Kyungchul, So Hyojin, Kim Hyungjin, Kim Sungjun, Choi Woo Young
Department of AI Semiconductor Engineering, Korea University, Sejong 30019, Republic of Korea.
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
ACS Nano. 2024 Sep 10;18(36):25128-25143. doi: 10.1021/acsnano.4c06942. Epub 2024 Aug 21.
This paper suggests the practical implications of utilizing a high-density crossbar array with self-compliance (SC) at the conductive filament (CF) formation stage. By limiting the excessive growth of CF, SC functions enable the operation of a crossbar array without access transistors. An AlO/TiO, internal overshoot limitation structure, allows the SC to have resistive random-access memory. In addition, an overshoot-limited memristor crossbar array makes it possible to implement vector-matrix multiplication (VMM) capability in neuromorphic systems. Furthermore, AlO/TiO structure optimization was conducted to reduce overshoot and operation current, verifying uniform bipolar resistive switching behavior and analog switching properties. Additionally, extensive electric pulse stimuli are confirmed, evaluating long-term potentiation (LTP), long-term depression (LTD), and other forms of synaptic plasticity. We found that LTP and LTD characteristics for training an online learning neural network enable MNIST classification accuracies of 92.36%. The SC mode quantized multilevel in offline learning neural networks achieved 95.87%. Finally, the 32 × 32 crossbar array demonstrated spiking neural network-based VMM operations to classify the MNIST image. Consequently, weight programming errors make only a 1.2% point of accuracy drop to software-based neural networks.
本文提出了在导电细丝(CF)形成阶段利用具有自顺应性(SC)的高密度交叉阵列的实际意义。通过限制CF的过度生长,SC功能使得交叉阵列在没有访问晶体管的情况下也能运行。一种AlO/TiO内部过冲限制结构,使SC具备电阻式随机存取存储器。此外,过冲限制的忆阻器交叉阵列使得在神经形态系统中实现向量-矩阵乘法(VMM)能力成为可能。此外,还进行了AlO/TiO结构优化以减少过冲和工作电流,验证了均匀的双极电阻开关行为和模拟开关特性。此外,确认了广泛的电脉冲刺激,评估了长时程增强(LTP)、长时程抑制(LTD)和其他形式的突触可塑性。我们发现,用于训练在线学习神经网络的LTP和LTD特性能够实现92.36%的MNIST分类准确率。在离线学习神经网络中,SC模式量化多级实现了95.87%的准确率。最后,32×32交叉阵列展示了基于脉冲神经网络的VMM操作来对MNIST图像进行分类。因此,权重编程误差仅使基于软件的神经网络的准确率下降1.2个百分点。