Suppr超能文献

用于高效硬件贝叶斯神经网络的铁电与非门

Ferroelectric NAND for efficient hardware bayesian neural networks.

作者信息

Song Minsuk, Koo Ryun-Han, Kim Jangsaeng, Han Chang-Hyeon, Yim Jiyong, Ko Jonghyun, Yoo Sijung, Choe Duk-Hyun, Kim Sangwook, Shin Wonjun, Kwon Daewoong

机构信息

Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul, 04763, Republic of Korea.

Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Nat Commun. 2025 Jul 25;16(1):6879. doi: 10.1038/s41467-025-61980-y.

Abstract

The rapid advancement of artificial intelligence has enabled breakthroughs in diverse fields, including autonomous systems and medical diagnostics. However, conventional deterministic neural networks struggle to capture uncertainty, limiting their reliability when handling real-world data, which are often noisy, imbalanced, or scarce. Bayesian neural networks address this limitation by representing weights as probabilistic distributions, allowing for natural uncertainty quantification and improved robustness. Despite their advantages, hardware-based implementations face significant challenges due to the difficulty of independently tuning both the mean and variance of weight distributions. Herein, we propose a 3D ferroelectric NAND-based Bayesian neural network system that leverages incremental step pulse programming technology to achieve efficient and scalable probabilistic weight control. The page-level programming capabilities and intrinsic device-to-device variations enable gaussian weight distributions in a single programming step, without structural modifications. By modulating the incremental step pulse programming voltage step, we achieve precise weight distribution control. The proposed system demonstrates successful uncertainty estimation, enhanced energy efficiency, and robustness to external noise for medical images.

摘要

人工智能的快速发展已在包括自主系统和医学诊断在内的多个领域实现了突破。然而,传统的确定性神经网络难以捕捉不确定性,在处理通常有噪声、不平衡或稀缺的现实世界数据时,限制了它们的可靠性。贝叶斯神经网络通过将权重表示为概率分布来解决这一局限性,从而实现自然的不确定性量化并提高鲁棒性。尽管它们具有优势,但基于硬件的实现面临着重大挑战,因为难以独立调整权重分布的均值和方差。在此,我们提出了一种基于3D铁电与非门的贝叶斯神经网络系统,该系统利用增量步进脉冲编程技术实现高效且可扩展的概率权重控制。页面级编程能力和固有的器件间变化使得在单个编程步骤中就能实现高斯权重分布,而无需进行结构修改。通过调制增量步进脉冲编程电压步长,我们实现了精确的权重分布控制。所提出的系统在医学图像方面展示了成功的不确定性估计、更高的能源效率以及对外部噪声的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c8/12297355/584bf85dc0f0/41467_2025_61980_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验