Ho Ya-Lun, Fong Chee Fai, Wu Yen-Ju, Konishi Kuniaki, Deng Chih-Zong, Fu Jui-Han, Kato Yuichiro K, Tsukagoshi Kazuhito, Tung Vincent, Chen Chun-Wei
Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki Tsukuba, Ibaraki 305-0044, Japan.
Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
ACS Nano. 2024 Sep 3;18(35):24173-24181. doi: 10.1021/acsnano.4c05560. Epub 2024 Aug 21.
Transition metal dichalcogenides (TMDCs) are at the forefront of nanophotonics because of their exceptional optical characteristics. The 2D architecture of TMDCs facilitates efficient light absorption and emission, holding tantalizing potential for next-generation nanophotonic and quantum devices. Yet, the atomic thinness limits their interaction volume with light, affecting light-matter interaction and quantum efficiency. The light coupling in the 2D layered TMDCs can be enhanced by integration with photonic structure, and the metasurfaces supporting bound states in the continuum (BICs) offer strong confinement of optical fields, ideal for coupling with 2D TMDCs. Here, we demonstrate enhanced light-matter coupling by integrating TMDC monolayers, including WSe and MoS, with a finite-area membrane metasurface, leading to amplified and high-quality-factor (-factor) spontaneous emission from quasi-BIC-coupled TMDC monolayers. The high--factor emission extends over an area with a scale of a few micrometers while maintaining the high- factor across the emission area. Notably, the suspended finite-area membrane metasurface, which is freestanding in air rather than positioned atop a substrate, minimizes radiation loss while enhancing light-matter interaction in the TMDC monolayer. Furthermore, the predominantly in-plane dipole orientation of excitons within TMDC monolayers results in distinctive enhancement behaviors for emission, contingent on the excitation power, when coupled with quasi-BIC modes exhibiting TE and TM resonances. This work introduces a nanophotonic platform for robust coupling of membrane metasurfaces with 2D materials, offering possibilities for developing 2D material-based nanophotonic and quantum devices.
过渡金属二硫属化物(TMDCs)因其卓越的光学特性而处于纳米光子学的前沿。TMDCs的二维结构有助于高效的光吸收和发射,为下一代纳米光子和量子器件带来了诱人的潜力。然而,原子级的薄度限制了它们与光的相互作用体积,影响了光与物质的相互作用和量子效率。通过与光子结构集成,可以增强二维层状TMDCs中的光耦合,而支持连续统束缚态(BICs)的超表面提供了强光场限制,非常适合与二维TMDCs耦合。在这里,我们通过将包括WSe和MoS在内的TMDC单层与有限面积的薄膜超表面集成,展示了增强的光与物质耦合,从而导致准BIC耦合的TMDC单层产生放大的、高品质因数(Q因子)的自发发射。高Q因子发射在几微米尺度的区域上延伸,同时在整个发射区域保持高Q因子。值得注意的是,悬浮在空气中而非位于衬底顶部的有限面积薄膜超表面,在增强TMDC单层中的光与物质相互作用的同时,将辐射损耗降至最低。此外,TMDC单层内激子的主要面内偶极取向,在与表现出TE和TM共振的准BIC模式耦合时,根据激发功率会导致发射具有独特的增强行为。这项工作引入了一个用于薄膜超表面与二维材料进行强耦合的纳米光子平台,为开发基于二维材料的纳米光子和量子器件提供了可能性。