Suppr超能文献

深度学习助力从前体 MS 信息中鉴定蛋白质。

Deep Learning Powers Protein Identification from Precursor MS Information.

机构信息

Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

出版信息

J Proteome Res. 2024 Sep 6;23(9):3837-3846. doi: 10.1021/acs.jproteome.4c00118. Epub 2024 Aug 21.

Abstract

Proteome analysis currently heavily relies on tandem mass spectrometry (MS/MS), which does not fully utilize MS1 features, as many precursors remain unselected for MS/MS fragmentation, especially in the cases of low abundance samples and wide abundance dynamic range samples. Therefore, leveraging MS1 features as a complement to MS/MS has become an attractive option to improve the coverage of feature identification. Herein, we propose MonoMS1, an approach combining deep learning-based retention time, ion mobility, detectability prediction, and logistic regression-based scoring for MS1 feature identification. The approach achieved a significant increase in MS1 feature identification based on an data set. Application of MonoMS1 to data sets with wide dynamic range, such as human serum proteome samples, and with low sample abundance, such as single-cell proteome samples, enabled substantial complementation of MS/MS-based peptide and protein identification. This method opens a new avenue for proteomic analysis and can boost proteomic research on complex samples.

摘要

蛋白质组分析目前主要依赖串联质谱(MS/MS),但它并没有充分利用 MS1 的特征,因为许多前体在 MS/MS 碎裂时未被选中,特别是在低丰度样本和宽动态范围样本的情况下。因此,利用 MS1 特征作为 MS/MS 的补充,已成为提高特征识别覆盖率的一种有吸引力的选择。在此,我们提出了 MonoMS1,这是一种结合基于深度学习的保留时间、离子淌度、可检测性预测以及基于逻辑回归的 MS1 特征识别评分的方法。该方法在一个 数据集上实现了 MS1 特征识别的显著增加。将 MonoMS1 应用于具有宽动态范围(如人类血清蛋白质组样本)和低样本丰度(如单细胞蛋白质组样本)的数据集,能够对基于 MS/MS 的肽和蛋白质鉴定进行实质性补充。该方法为蛋白质组学分析开辟了新途径,并能促进对复杂样本的蛋白质组学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验