Suppr超能文献

一种用于同位素电荷态分配的快速神经网络。

A Fast Neural Network for Isotopic Charge State Assignment.

作者信息

Pavek John G, Bollis Nicholas E, Grimes Josiah, Shortreed Michael R, Smith Lloyd M, Marty Michael T

机构信息

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

出版信息

J Am Chem Soc. 2025 Jun 25;147(25):21610-21620. doi: 10.1021/jacs.5c03162. Epub 2025 Jun 10.

Abstract

Electrospray ionization (ESI) mass spectrometry is an essential technique for chemical analysis in a range of fields. In ESI, analytes can produce multiple charge states, which must be correctly assigned for identification. Existing approaches to charge state assignment can suffer from limited accuracy or poor speed. Here, we developed a fast neural network to perform isotopic envelope charge assignment. The performance of our algorithm, IsoDec, was demonstrated on top-down proteomics spectra collected on diverse instruments. On these highly complex individual spectra, we found that IsoDec correctly assigns more features compared to existing software tools while simultaneously providing improved speed and accuracy. Importantly, this performance enhancement stems directly from the neural network charge assignment approach and not simply from improved scoring and filtering of isotopic envelopes. Finally, when applied to large top-down proteomics data sets, we discovered that database searching of the IsoDec deconvolution output produces proteoform-spectrum matches with a better combination of coverage and accuracy. Overall, IsoDec provides a compelling demonstration of the potential of lightweight neural networks in mass spectrometry data analysis for diverse applications.

摘要

电喷雾电离(ESI)质谱法是一系列领域中化学分析的重要技术。在电喷雾电离中,分析物可以产生多个电荷状态,为了进行识别,必须正确分配这些电荷状态。现有的电荷状态分配方法可能存在准确性有限或速度较慢的问题。在这里,我们开发了一种快速神经网络来进行同位素包络电荷分配。我们的算法IsoDec的性能在不同仪器上收集的自上而下蛋白质组学光谱上得到了验证。在这些高度复杂的个体光谱上,我们发现与现有的软件工具相比,IsoDec能正确分配更多的特征,同时提高了速度和准确性。重要的是,这种性能提升直接源于神经网络电荷分配方法,而不仅仅是来自对同位素包络的改进评分和过滤。最后,当应用于大型自上而下蛋白质组学数据集时,我们发现对IsoDec去卷积输出进行数据库搜索会产生具有更好覆盖率和准确性组合的蛋白质异构体-光谱匹配。总体而言,IsoDec有力地证明了轻量级神经网络在质谱数据分析中用于各种应用的潜力。

相似文献

1
A Fast Neural Network for Isotopic Charge State Assignment.一种用于同位素电荷态分配的快速神经网络。
J Am Chem Soc. 2025 Jun 25;147(25):21610-21620. doi: 10.1021/jacs.5c03162. Epub 2025 Jun 10.
3
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

3
Improving Top-Down Sequence Coverage with Targeted Fragment Matching.通过靶向片段匹配提高自上而下的序列覆盖度
J Am Soc Mass Spectrom. 2024 Dec 4;35(12):3296-3300. doi: 10.1021/jasms.4c00161. Epub 2024 Oct 22.
4
Deep Learning Powers Protein Identification from Precursor MS Information.深度学习助力从前体 MS 信息中鉴定蛋白质。
J Proteome Res. 2024 Sep 6;23(9):3837-3846. doi: 10.1021/acs.jproteome.4c00118. Epub 2024 Aug 21.
7
Recent Developments in Machine Learning for Mass Spectrometry.用于质谱分析的机器学习的最新进展
ACS Meas Sci Au. 2024 Feb 21;4(3):233-246. doi: 10.1021/acsmeasuresciau.3c00060. eCollection 2024 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验