Suppr超能文献

GlyPep-Quant中基于库的运行间虚拟匹配定量分析可改善位点特异性聚糖鉴定。

Library-based virtual match-between-runs quantification in GlyPep-Quant improves site-specific glycan identification.

作者信息

Zhu He, Fang Zheng, Liu Lei, Wang Yan, Qin Hongqiang, Nie Yongzhan, Dong Mingming, Ye Mingliang

机构信息

State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2025 Jul 14;16(1):6483. doi: 10.1038/s41467-025-61673-6.

Abstract

Glycosylation changes are closely related to various diseases, including cancer. The quantitative analysis of site-specific glycans at proteomics scale remains challenging due to low glycopeptide spectra interpretation. Here, we present GlyPep-Quant, a tool for sensitive quantification and identification of site-specific glycans. Using a well-trained machine learning model, GlyPep-Quant quantified 25.1%-178.9% more site-specific glycans without missing values than pGlycoQuant, MSFragger-Glyco, and Skyline. To utilize identified information from previous large-scale dataset, an MS1 feature library-based "virtual match-between-runs" quantification scheme was developed, enabling over eightfold more site-specific glycan identification/quantification than conventional MS2-based methods. Enhanced coverage prompted the development of a glycoproteomic biomarker discovery method, involving calculation of site-specific glycan abundances ratios at the same glycosylation site, minimizing individual expression and experimental condition variability. Two pairs of site-specific glycan ratios on sites P01011-N127 and P08185-N96, were selected as high-performance biomarkers to classify gastric cancer (GC) from healthy controls (AUC > 0.95). Moreover, the two ratios performed well in distinguishing GC using an independent cohort by the library-based quantification strategy with diagnostic accuracy up to 85%. GlyPep-Quant is poised for broader glycoproteomic applications.

摘要

糖基化变化与包括癌症在内的多种疾病密切相关。由于糖肽谱解释困难,在蛋白质组学规模上对位点特异性聚糖进行定量分析仍然具有挑战性。在此,我们展示了GlyPep-Quant,这是一种用于灵敏定量和鉴定位点特异性聚糖的工具。使用经过良好训练的机器学习模型,GlyPep-Quant定量的位点特异性聚糖比pGlycoQuant、MSFragger-Glyco和Skyline多25.1%-178.9%,且无缺失值。为了利用先前大规模数据集中的已识别信息,开发了一种基于MS1特征库的“运行间虚拟匹配”定量方案,与传统的基于MS2的方法相比,能够多鉴定/定量八倍以上的位点特异性聚糖。增强的覆盖范围促使开发了一种糖蛋白质组学生物标志物发现方法,该方法涉及计算同一糖基化位点的位点特异性聚糖丰度比,最大限度地减少个体表达和实验条件的变异性。选择位点P01011-N127和P08185-N96上的两对位点特异性聚糖比率作为高性能生物标志物,以区分胃癌(GC)和健康对照(AUC>0.95)。此外,通过基于库的定量策略,这两个比率在使用独立队列区分GC方面表现良好,诊断准确率高达85%。GlyPep-Quant有望用于更广泛的糖蛋白质组学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验