Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium.
J Proteome Res. 2024 Sep 6;23(9):3806-3822. doi: 10.1021/acs.jproteome.4c00104. Epub 2024 Aug 19.
Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.
血浆蛋白质组学是人类疾病研究的宝贵工具,但为了使用传统的数据依赖型采集 (DDA) 进行深入分析和生物标志物发现,需要进行广泛的样品制备。在这里,我们强调了适度的血浆预分级和非依赖性数据采集 (DIA) 相结合的功效,这种方法可以在保持成本效益的同时,显著提高蛋白质组覆盖度和深度。我们使用来自 20 名 COVID-19 患者队列的人血浆,该方法利用了常用的耗尽、样品制备和分级解决方案,然后进行 3 次液相色谱-质谱/质谱 (LC-MS/MS) 注射,总 DIA 运行时间为 360 分钟。我们平均每个患者检测到 1321 种蛋白质,整个队列中有 2031 种独特的蛋白质。差异分析进一步证明了该方法在血浆蛋白质组学研究和临床生物标志物鉴定中的适用性,在人血浆中低至 47ng/L 的生物学浓度下鉴定出数百种差异丰度的蛋白质。数据可通过 ProteomeXchange 以标识符 PXD047901 获得。总之,本研究引入了一种简化、具有成本效益的深度血浆蛋白质组分析方法,使其在经典研究环境之外具有更广泛的应用,并能够在临床环境中进行更大规模的多组学研究。我们的比较分析表明,分级,无论是在分级前还是分级后对样品进行混合,都显著提高了定量蛋白质的数量。这突出了分级在增强血浆蛋白质组分析深度方面的价值,从而为 COVID-19 等疾病的生物标志物发现提供了更全面的图谱。