Suppr超能文献

重复混合检测监测 SARS-CoV-2 流行率:在瑞士常规数据中的应用。

Surveillance of SARS-CoV-2 prevalence from repeated pooled testing: application to Swiss routine data.

机构信息

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.

Department of Epidemiology and Health Systems, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Lausanne, Switzerland.

出版信息

Epidemiol Infect. 2024 Aug 22;152:e100. doi: 10.1017/S0950268824000876.

Abstract

Surveillance of SARS-CoV-2 through reported positive RT-PCR tests is biased due to non-random testing. Prevalence estimation in population-based samples corrects for this bias. Within this context, the pooled testing design offers many advantages, but several challenges remain with regards to the analysis of such data. We developed a Bayesian model aimed at estimating the prevalence of infection from repeated pooled testing data while (i) correcting for test sensitivity; (ii) propagating the uncertainty in test sensitivity; and (iii) including correlation over time and space. We validated the model in simulated scenarios, showing that the model is reliable when the sample size is at least 500, the pool size below 20, and the true prevalence below 5%. We applied the model to 1.49 million pooled tests collected in Switzerland in 2021-2022 in schools, care centres, and workplaces. We identified similar dynamics in all three settings, with prevalence peaking at 4-5% during winter 2022. We also identified differences across regions. Prevalence estimates in schools were correlated with reported cases, hospitalizations, and deaths (coefficient 0.84 to 0.90). We conclude that in many practical situations, the pooled test design is a reliable and affordable alternative for the surveillance of SARS-CoV-2 and other viruses.

摘要

由于非随机检测,通过报告的阳性 RT-PCR 检测对 SARS-CoV-2 进行监测存在偏差。基于人群样本的患病率估计可纠正这种偏差。在此背景下, pooled testing 设计具有许多优势,但在分析此类数据时仍存在一些挑战。我们开发了一种贝叶斯模型,旨在从重复的 pooled testing 数据中估计感染的患病率,同时(i)校正检测灵敏度;(ii)传播检测灵敏度的不确定性;(iii)包括时间和空间上的相关性。我们在模拟场景中验证了该模型,结果表明,当样本量至少为 500,pool 大小低于 20,真实患病率低于 5%时,该模型是可靠的。我们将该模型应用于 2021-2022 年在瑞士学校、护理中心和工作场所收集的 149 万份 pooled 测试。我们在所有三个环境中都发现了类似的动态,2022 年冬季患病率峰值达到 4-5%。我们还发现了不同地区之间的差异。学校的患病率估计与报告的病例、住院和死亡相关(系数为 0.84 至 0.90)。我们得出结论,在许多实际情况下,pooled test 设计是 SARS-CoV-2 和其他病毒监测的可靠且经济实惠的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d571/11736450/e0bfe6b9612a/S0950268824000876_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验