Suppr超能文献

一种具有与神经形态处理器兼容的异步输出的4096通道基于事件的多电极阵列。

A 4096 channel event-based multielectrode array with asynchronous outputs compatible with neuromorphic processors.

作者信息

Cartiglia Matteo, Costa Filippo, Narayanan Shyam, Bui Cat-Vu H, Ulusan Hasan, Risi Nicoletta, Haessig Germain, Hierlemann Andreas, Cardes Fernando, Indiveri Giacomo

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.

Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.

出版信息

Nat Commun. 2024 Aug 21;15(1):7163. doi: 10.1038/s41467-024-50783-2.

Abstract

Bio-signal sensing is pivotal in medical bioelectronics. Traditional methods focus on high sampling rates, leading to large amounts of irrelevant data and high energy consumption. We introduce a self-clocked microelectrode array (MEA) that digitizes bio-signals at the pixel level by encoding changes as asynchronous digital address-events only when they exceed a threshold, significantly reducing off-chip data transmission. This novel MEA comprises a 64 × 64 electrode array, an asynchronous 2D-arbiter, and an Address-Event Representation (AER) communication block. Each pixel operates autonomously, monitoring voltage fluctuations from cellular activity and producing digital pulses for significant changes. Positive and negative signal changes are encoded as "up" and "down" events and are routed off-chip via the asynchronous arbiter. We present results from chip characterization and experimental measurements using electrogenic cells. Additionally, we interface the MEA to a mixed-signal neuromorphic processor, demonstrating a prototype for end-to-end event-based bio-signal sensing and processing.

摘要

生物信号传感在医学生物电子学中至关重要。传统方法侧重于高采样率,导致产生大量无关数据和高能耗。我们推出了一种自定时微电极阵列(MEA),该阵列通过仅在生物信号变化超过阈值时将其编码为异步数字地址事件,在像素级别对生物信号进行数字化,从而显著减少片外数据传输。这种新型MEA包括一个64×64电极阵列、一个异步二维仲裁器和一个地址事件表示(AER)通信模块。每个像素自主运行,监测细胞活动产生的电压波动,并在发生显著变化时产生数字脉冲。正信号变化和负信号变化分别编码为“向上”和“向下”事件,并通过异步仲裁器传输到片外。我们展示了芯片表征结果以及使用电生细胞的实验测量结果。此外,我们将MEA与一个混合信号神经形态处理器连接,展示了一个基于事件的端到端生物信号传感和处理原型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验