Suppr超能文献

Argo:一种用于体内神经记录的高通道计数记录系统。

The Argo: a high channel count recording system for neural recording in vivo.

机构信息

Paradromics, Inc, Austin, TX, United States of America.

Caeleste CVBA, Mechelen, Belgium.

出版信息

J Neural Eng. 2021 Feb 24;18(1):015002. doi: 10.1088/1741-2552/abd0ce.

Abstract

OBJECTIVE

Decoding neural activity has been limited by the lack of tools available to record from large numbers of neurons across multiple cortical regions simultaneously with high temporal fidelity. To this end, we developed the Argo system to record cortical neural activity at high data rates.

APPROACH

Here we demonstrate a massively parallel neural recording system based on platinum-iridium microwire electrode arrays bonded to a CMOS voltage amplifier array. The Argo system is the highest channel count in vivo neural recording system, supporting simultaneous recording from 65 536 channels, sampled at 32 kHz and 12-bit resolution. This system was designed for cortical recordings, compatible with both penetrating and surface microelectrodes.

MAIN RESULTS

We validated this system through initial bench testing to determine specific gain and noise characteristics of bonded microwires, followed by in-vivo experiments in both rat and sheep cortex. We recorded spiking activity from 791 neurons in rats and surface local field potential activity from over 30 000 channels in sheep.

SIGNIFICANCE

These are the largest channel count microwire-based recordings in both rat and sheep. While currently adapted for head-fixed recording, the microwire-CMOS architecture is well suited for clinical translation. Thus, this demonstration helps pave the way for a future high data rate intracortical implant.

摘要

目的

由于缺乏可同时在多个皮质区域以高时间分辨率记录大量神经元的工具,神经活动的解码受到限制。为此,我们开发了 Argo 系统以高速率记录皮质神经活动。

方法

在这里,我们展示了一种基于铂铱微丝电极阵列与 CMOS 电压放大器阵列结合的大规模并行神经记录系统。Argo 系统是最高通道数的体内神经记录系统,支持同时从 65536 个通道进行记录,采样率为 32 kHz 和 12 位分辨率。该系统专为皮质记录设计,与穿透和表面微电极兼容。

主要结果

我们通过初始台式测试验证了该系统,以确定键合微丝的特定增益和噪声特性,然后在大鼠和绵羊皮质进行体内实验。我们记录了大鼠 791 个神经元的尖峰活动和绵羊 30000 多个通道的表面局部场电位活动。

意义

这些是大鼠和绵羊中最大通道数的基于微丝的记录。虽然目前适用于头固定记录,但微丝-CMOS 架构非常适合临床转化。因此,该演示有助于为未来的高数据率皮质内植入物铺平道路。

相似文献

1
The Argo: a high channel count recording system for neural recording in vivo.
J Neural Eng. 2021 Feb 24;18(1):015002. doi: 10.1088/1741-2552/abd0ce.
2
A low-cost, scalable, current-sensing digital headstage for high channel count μECoG.
J Neural Eng. 2017 Apr;14(2):026009. doi: 10.1088/1741-2552/aa5a82. Epub 2017 Jan 19.
3
Carbon fiber electrodes for intracellular recording and stimulation.
J Neural Eng. 2021 Dec 14;18(6). doi: 10.1088/1741-2552/ac3dd7.
4
A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip.
J Neurosci Methods. 2012 Apr 15;205(2):223-32. doi: 10.1016/j.jneumeth.2012.01.003. Epub 2012 Jan 12.
5
A high-density carbon fiber neural recording array technology.
J Neural Eng. 2019 Feb;16(1):016024. doi: 10.1088/1741-2552/aae8d9. Epub 2018 Oct 16.
7
A wireless multi-channel neural amplifier for freely moving animals.
Nat Neurosci. 2011 Feb;14(2):263-9. doi: 10.1038/nn.2730. Epub 2011 Jan 16.
8
Active C4 Electrodes for Local Field Potential Recording Applications.
Sensors (Basel). 2016 Feb 4;16(2):198. doi: 10.3390/s16020198.
10
Verification of a Rapidly Multiplexed Circuit for Scalable Action Potential Recording.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1655-1663. doi: 10.1109/TBCAS.2019.2958348. Epub 2019 Dec 9.

引用本文的文献

1
Fabrication and Dose-Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode.
Micromachines (Basel). 2025 Aug 18;16(8):945. doi: 10.3390/mi16080945.
2
Towards Precise Synthetic Neural Codes: High-dimensional Stimulation with Flexible Electrodes.
Npj Flex Electron. 2025;9(1). doi: 10.1038/s41528-025-00447-y. Epub 2025 Jul 14.
3
Long-term performance of intracortical microelectrode arrays in 14 BrainGate clinical trial participants.
medRxiv. 2025 Jul 2:2025.07.02.25330310. doi: 10.1101/2025.07.02.25330310.
4
Bidirectional mechanisms and emerging strategies for implantable bioelectronic interfaces.
Bioact Mater. 2025 Jun 19;52:634-667. doi: 10.1016/j.bioactmat.2025.06.014. eCollection 2025 Oct.
5
Capturing the Electrical Activity of all Cortical Neurons: Are Solutions Within Reach?
Adv Sci (Weinh). 2025 Aug;12(32):e06225. doi: 10.1002/advs.202506225. Epub 2025 Jun 27.
6
Innovating beyond electrophysiology through multimodal neural interfaces.
Nat Rev Electr Eng. 2025 Jan;2(1):42-57. doi: 10.1038/s44287-024-00121-x. Epub 2024 Dec 16.
7
Spatiotemporal properties of cortical excitatory and inhibitory neuron activation by sustained and bursting electrical microstimulation.
iScience. 2025 May 20;28(6):112707. doi: 10.1016/j.isci.2025.112707. eCollection 2025 Jun 20.
8
Materials and devices for high-density, high-throughput micro-electrocorticography arrays.
Fundam Res. 2024 Feb 28;5(1):17-28. doi: 10.1016/j.fmre.2024.01.016. eCollection 2025 Jan.
9
Overcoming failure: improving acceptance and success of implanted neural interfaces.
Bioelectron Med. 2025 Mar 14;11(1):6. doi: 10.1186/s42234-025-00168-7.

本文引用的文献

1
Neural stimulation and recording performance in human sensorimotor cortex over 1500 days.
J Neural Eng. 2021 Aug 13;18(4). doi: 10.1088/1741-2552/ac18ad.
2
High-performance brain-to-text communication via handwriting.
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
3
Adaptive tracking of human ECoG network dynamics.
J Neural Eng. 2021 Feb 24;18(1):016011. doi: 10.1088/1741-2552/abae42.
4
CHIME: CMOS-Hosted Microelectrodes for Massively Scalable Neuronal Recordings.
Front Neurosci. 2020 Aug 11;14:834. doi: 10.3389/fnins.2020.00834. eCollection 2020.
5
Prefrontal High Gamma in ECoG Tags Periodicity of Musical Rhythms in Perception and Imagination.
eNeuro. 2020 Jul 31;7(4). doi: 10.1523/ENEURO.0413-19.2020. Print 2020 Jul/Aug.
7
A modular high-density μECoG system on macaque vlPFC for auditory cognitive decoding.
J Neural Eng. 2020 Jul 10;17(4):046008. doi: 10.1088/1741-2552/ab9986.
9
Massively parallel microwire arrays integrated with CMOS chips for neural recording.
Sci Adv. 2020 Mar 20;6(12):eaay2789. doi: 10.1126/sciadv.aay2789. eCollection 2020 Mar.
10
Power Modulations of ECoG Alpha/Beta and Gamma Bands Correlate With Time-Derivative of Force During Hand Grasp.
Front Neurosci. 2020 Feb 14;14:100. doi: 10.3389/fnins.2020.00100. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验