Department of Orthodontics, Faculty of Dentistry, Alexandria University, Champollion Street, El Azarita, Alexandria, Egypt.
Orthodontics (DSATP), Nobel Biocare Oral Health Centre/ Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
Sci Rep. 2024 Aug 21;14(1):19385. doi: 10.1038/s41598-024-69314-6.
Smile aesthetics is an important factor to consider during orthodontic treatment planning. The aim of the present study is to assess the predictability of Invisalign SmileView for digital AI smile simulation in comparison to actual smile treatment outcomes, using various smile assessment parameters. A total of 24 adult subjects (12 females and 12 males; mean age 22 ± 5.2 years) who chose to be treated using Invisalign were prospectively recruited to have their pretreatment smiles captured using the Invisalign SmileView to simulate their new smiles before treatment was started. Patients were then treated using upper and lower Invisalign aligners with average treatment time of 18 ± 6 months. Full post-treatment records were obtained and full smile frame images of simulated smile and actual final smile of each subject were evaluated by an independent examiner using an objective assessment sheet. Ten smile variants were used to assess the characteristics of the full smile images. Significance level was set at P < 0.05. The ICC for the quantitative parameters showed that there was an overall excellent & good internal consistency (alpha value > 0.7 & > 0.9). The Independent t test was performed amongst the quantitative variables. The P value was not significant for all except maxillary inter canine width (P = 0.05), stating that for the five variables namely; philtrum height, commissure height, smile width, buccal corridor and smile index, actual mean values were similar to the simulation mean values. For the qualitative variables, the Kappa value ranged between 0.66 and - 0.75 which showed a substantial level of agreement between the examiners. Additionally, the Chi square test for the qualitative variables, revealed that the P value was found to be significant in all except lip line. This implies that only the lip line values are comparable. More optimal lip lines, straighter smile arcs and more ideal tooth display were achieved in actual post treatment results in comparison to the initially predicted smiles. Five quantitative smile assessment parameters i.e., philtrum height, commissure height, smile width, buccal corridor, and smile index, could be used as reliable predictors of smile simulation. Maxillary inter canine width cannot be considered to be a reliable parameter for smile simulation prediction. A single qualitative parameter, namely the lip line, can be used as a reliable predictor for smile simulation. Three qualitative parameters i.e., most posterior tooth display, smile arc, and amount of lower incisor exposure cannot be considered as reliable parameters for smile prediction.Trial Registration number and date: NCT06123585, (09/11/2023).
微笑美学是正畸治疗计划中需要考虑的一个重要因素。本研究旨在使用各种微笑评估参数,评估 Invisalign SmileView 用于数字 AI 微笑模拟的可预测性,与实际微笑治疗结果进行比较。共有 24 名成年受试者(12 名女性和 12 名男性;平均年龄 22±5.2 岁)选择使用 Invisalign 进行治疗,前瞻性地招募他们在开始治疗前使用 Invisalign SmileView 拍摄他们的预处理微笑,以模拟他们的新微笑。然后,患者使用上、下 Invisalign 矫正器进行治疗,平均治疗时间为 18±6 个月。获得完整的治疗后记录,并由一名独立检查者使用客观评估表评估每个受试者的模拟微笑和实际最终微笑的完整微笑帧图像。使用 10 个微笑变体评估全微笑图像的特征。显著性水平设为 P<0.05。定量参数的 ICC 显示,整体具有极好的和良好的内部一致性(alpha 值>0.7 和>0.9)。对定量变量进行独立 t 检验。除上颌尖牙间宽度(P=0.05)外,所有变量的 P 值均无显著性差异,这表明在五个变量中,即人中高度、口角高度、微笑宽度、颊廊和微笑指数,实际平均值与模拟平均值相似。对于定性变量,Kappa 值在 0.66 到-0.75 之间,表明检查者之间存在实质性的一致性。此外,定性变量的卡方检验显示,除唇线外,所有变量的 P 值均有显著性差异。这意味着只有唇线值是可以比较的。与最初预测的微笑相比,实际治疗后的结果中,唇线更加优化,微笑弧更直,牙齿更理想地显露。五个定量微笑评估参数,即人中高度、口角高度、微笑宽度、颊廊和微笑指数,可以作为微笑模拟的可靠预测因子。上颌尖牙间宽度不能作为微笑模拟预测的可靠参数。单一的定性参数,即唇线,可以作为微笑模拟的可靠预测因子。三个定性参数,即后牙最大显露量、微笑弧和下切牙暴露量,不能作为微笑预测的可靠参数。试验注册号和日期:NCT06123585(2023 年 9 月 11 日)。