Suppr超能文献

儿科颅外实体瘤和淋巴瘤的转录组谱分析可实现快速、低成本的诊断分类。

Transcriptome profiling of pediatric extracranial solid tumors and lymphomas enables rapid low-cost diagnostic classification.

机构信息

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA.

Department of Pathology, St. Jude Children's Research Hospital, Memphis, USA.

出版信息

Sci Rep. 2024 Aug 21;14(1):19456. doi: 10.1038/s41598-024-70541-0.

Abstract

Approximately 80% of pediatric tumors occur in low- and middle-income countries (LMIC), where diagnostic tools essential for treatment decisions are often unavailable or incomplete. Development of cost-effective molecular diagnostics will help bridge the cancer diagnostic gap and ultimately improve pediatric cancer outcomes in LMIC settings. We investigated the feasibility of using nanopore whole transcriptome sequencing on formalin-fixed paraffin embedded (FFPE)-derived RNA and a composite machine learning model for pediatric solid tumor diagnosis. Transcriptome cDNA sequencing was performed on a heterogenous set of 221 FFPE and 32 fresh frozen pediatric solid tumor and lymphoma specimens on Oxford Nanopore Technologies' sequencing platforms. A composite machine learning model was then used to classify transcriptional profiles into clinically actionable tumor types and subtypes. In total, 95.6% and 89.7% of pediatric solid tumors and lymphoma specimens were correctly classified, respectively. 71.5% of pediatric solid tumors had prediction probabilities > 0.8 and were classified with 100% accuracy. Similarly, for lymphomas, 72.4% of samples that had prediction probabilities > 0.6 were classified with 97.6% accuracy. Additionally, FOXO1 fusion status was predicted accurately for 97.4% of rhabdomyosarcomas and MYCN amplification was predicted with 88% accuracy in neuroblastoma. Whole transcriptome sequencing from FFPE-derived pediatric solid tumor and lymphoma samples has the potential to provide clinical classification of both tissue lineage and core genomic classification. Further expansion, refinement, and validation of this approach is necessary to explore whether this technology could be part of the solution of addressing the diagnostic limitations in LMIC.

摘要

大约 80%的儿科肿瘤发生在中低收入国家(LMIC),而这些国家往往缺乏或不完整的治疗决策所需的诊断工具。开发具有成本效益的分子诊断技术将有助于弥合癌症诊断差距,并最终改善 LMIC 环境中的儿科癌症结局。我们研究了在福尔马林固定石蜡包埋(FFPE)衍生的 RNA 上使用纳米孔全转录组测序和综合机器学习模型进行儿科实体瘤诊断的可行性。在 Oxford Nanopore Technologies 的测序平台上,对 221 个 FFPE 和 32 个新鲜冷冻的儿科实体瘤和淋巴瘤标本的异质数据集进行了转录组 cDNA 测序。然后,使用综合机器学习模型将转录谱分类为具有临床可操作性的肿瘤类型和亚型。总共,95.6%和 89.7%的儿科实体瘤和淋巴瘤标本分别被正确分类。71.5%的儿科实体瘤的预测概率>0.8,分类准确率为 100%。类似地,对于淋巴瘤,72.4%的预测概率>0.6的样本的分类准确率为 97.6%。此外,对于横纹肌肉瘤,FOXO1 融合状态的预测准确率为 97.4%,神经母细胞瘤中 MYCN 扩增的预测准确率为 88%。FFPE 衍生的儿科实体瘤和淋巴瘤样本的全转录组测序有可能提供组织谱系和核心基因组分类的临床分类。需要进一步扩展、改进和验证这种方法,以探讨这种技术是否可以成为解决 LMIC 诊断局限性的解决方案的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5acc/11339337/64ddec3dd3f6/41598_2024_70541_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验