Suppr超能文献

基于多数据和机器学习的颞下颌关节紊乱病患者阻塞性睡眠呼吸暂停自动预测。

Automatic prediction of obstructive sleep apnea in patients with temporomandibular disorder based on multidata and machine learning.

机构信息

Department of Orofacial Pain and Oral Medicine, Kyung Hee University, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea.

Department of Computer Science, Hanyang University, Seoul, 04763, Korea.

出版信息

Sci Rep. 2024 Aug 21;14(1):19362. doi: 10.1038/s41598-024-70432-4.

Abstract

Obstructive sleep apnea (OSA) is closely associated with the development and chronicity of temporomandibular disorder (TMD). Given the intricate pathophysiology of both OSA and TMD, comprehensive diagnostic approaches are crucial. This study aimed to develop an automatic prediction model utilizing multimodal data to diagnose OSA among TMD patients. We collected a range of multimodal data, including clinical characteristics, portable polysomnography, X-ray, and MRI data, from 55 TMD patients who reported sleep problems. This data was then analyzed using advanced machine learning techniques. Three-dimensional VGG16 and logistic regression models were used to identify significant predictors. Approximately 53% (29 out of 55) of TMD patients had OSA. Performance accuracy was evaluated using logistic regression, multilayer perceptron, and area under the curve (AUC) scores. OSA prediction accuracy in TMD patients was 80.00-91.43%. When MRI data were added to the algorithm, the AUC score increased to 1.00, indicating excellent capability. Only the obstructive apnea index was statistically significant in predicting OSA in TMD patients, with a threshold of 4.25 events/h. The learned features of the convolutional neural network were visualized as a heatmap using a gradient-weighted class activation mapping algorithm, revealing that it focuses on differential anatomical parameters depending on the absence or presence of OSA. In OSA-positive cases, the nasopharynx, oropharynx, uvula, larynx, epiglottis, and brain region were recognized, whereas in OSA-negative cases, the tongue, nose, nasal turbinate, and hyoid bone were recognized. Prediction accuracy and heat map analyses support the plausibility and usefulness of this artificial intelligence-based OSA diagnosis and prediction model in TMD patients, providing a deeper understanding of regions distinguishing between OSA and non-OSA.

摘要

阻塞性睡眠呼吸暂停(OSA)与颞下颌关节紊乱(TMD)的发生和慢性化密切相关。鉴于 OSA 和 TMD 的复杂病理生理学,全面的诊断方法至关重要。本研究旨在开发一种利用多模态数据自动预测 TMD 患者 OSA 的模型。我们从 55 名报告睡眠问题的 TMD 患者中收集了一系列多模态数据,包括临床特征、便携式多导睡眠图、X 光和 MRI 数据。然后使用先进的机器学习技术对这些数据进行分析。使用三维 VGG16 和逻辑回归模型来识别显著预测因子。大约 53%(55 名 TMD 患者中有 29 名)的患者患有 OSA。使用逻辑回归、多层感知器和曲线下面积(AUC)评分来评估 OSA 预测准确性。TMD 患者的 OSA 预测准确率为 80.00-91.43%。当将 MRI 数据添加到算法中时,AUC 评分增加到 1.00,表明具有出色的能力。仅阻塞性呼吸暂停指数在预测 TMD 患者的 OSA 方面具有统计学意义,其阈值为 4.25 次/h。使用梯度加权类激活映射算法将卷积神经网络的学习特征可视化作为热图,表明它根据是否存在 OSA 关注不同的解剖参数。在 OSA 阳性病例中,识别到鼻咽、口咽、悬雍垂、喉、会厌和大脑区域,而在 OSA 阴性病例中,识别到舌、鼻、鼻甲和舌骨。预测准确性和热图分析支持该基于人工智能的 TMD 患者 OSA 诊断和预测模型的合理性和有用性,为区分 OSA 和非 OSA 的区域提供了更深入的了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/855b/11339326/7ed4feb99db1/41598_2024_70432_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验