Laboratoire Biogéosciences, UMR CNRS 6282, Université de Bourgogne, Dijon, France.
Institut Universitaire de France (IUF), Paris, France.
Nature. 2024 Sep;633(8029):365-370. doi: 10.1038/s41586-024-07842-x. Epub 2024 Aug 21.
The nitrogen isotopic composition of sedimentary rocks (δN) can trace redox-dependent biological pathways and early Earth oxygenation. However, there is no substantial change in the sedimentary δN record across the Great Oxidation Event about 2.45 billion years ago (Ga), a prominent redox change. This argues for a temporal decoupling between the emergence of the first oxygen-based oxidative pathways of the nitrogen cycle and the accumulation of atmospheric oxygen after 2.45 Ga (ref. ). The transition between both states shows strongly positive δN values (10-50‰) in rocks deposited between 2.8 Ga and 2.6 Ga, but their origin and spatial extent remain uncertain. Here we report strongly positive δN values (>30‰) in the 2.68-Gyr-old shallow to deep marine sedimentary deposit of the Serra Sul Formation, Amazonian Craton, Brazil. Our findings are best explained by regionally variable extents of ammonium oxidation to N or NO tied to a cryptic oxygen cycle, implying that oxygenic photosynthesis was operating at 2.7 Ga. Molecular oxygen production probably shifted the redox potential so that an intermediate N cycle based on ammonium oxidation developed before nitrate accumulation in surface waters. We propose to name this period, when strongly positive nitrogen isotopic compositions are superimposed on the usual range of Precambrian δN values, the Nitrogen Isotope Event. We suggest that it marks the earliest steps of the biogeochemical reorganizations that led to the Great Oxidation Event.
沉积岩的氮同位素组成(δN)可以追踪依赖氧化还原的生物途径和早期地球的氧化作用。然而,在大约 24.5 亿年前(Ga)的大氧化事件中,沉积记录中并没有实质性的δN 变化,这是一个显著的氧化还原变化。这表明氮循环中第一个基于氧气的氧化途径的出现与 24.5 Ga 后大气氧气的积累之间存在时间上的解耦。这两种状态之间的转变在 2.8 Ga 和 2.6 Ga 之间沉积的岩石中表现出强烈的正δN 值(10-50‰),但其起源和空间范围仍不确定。在这里,我们报告了在巴西亚马逊克拉通的 2.68 亿年前的浅海到深海沉积的 Serra Sul 地层中存在强烈的正δN 值(>30‰)。我们的发现最好用与隐式氧气循环相关的铵氧化到 N 或 NO 的区域变化程度来解释,这意味着产氧光合作用在 2.7 Ga 时就已经开始了。氧气的产生可能改变了氧化还原电位,使得基于铵氧化的中间氮循环在硝酸盐在地表水中积累之前就发展起来了。我们提议将这个时期命名为氮同位素事件,当强烈的正氮同位素组成叠加在通常的前寒武纪δN 值范围内时,就会出现这个时期。我们认为,它标志着导致大氧化事件的生物地球化学重组的最早步骤。