Departments of Geosciences and Chemistry, Princeton University, Princeton NJ 08544.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4782-7. doi: 10.1073/pnas.1402976111. Epub 2014 Mar 17.
Biological nitrogen fixation constitutes the main input of fixed nitrogen to Earth's ecosystems, and its isotope effect is a key parameter in isotope-based interpretations of the N cycle. The nitrogen isotopic composition (δ(15)N) of newly fixed N is currently believed to be ∼-1‰, based on measurements of organic matter from diazotrophs using molybdenum (Mo)-nitrogenases. We show that the vanadium (V)- and iron (Fe)-only "alternative" nitrogenases produce fixed N with significantly lower δ(15)N (-6 to -7‰). An important contribution of alternative nitrogenases to N2 fixation provides a simple explanation for the anomalously low δ(15)N (<-2‰) in sediments from the Cretaceous Oceanic Anoxic Events and the Archean Eon. A significant role for the alternative nitrogenases over Mo-nitrogenase is also consistent with evidence of Mo scarcity during these geologic periods, suggesting an additional dimension to the coupling between the global cycles of trace elements and nitrogen.
生物固氮构成了地球生态系统中固定氮的主要输入,其同位素效应是基于同位素解释氮循环的关键参数。目前,基于对固氮生物使用钼(Mo)-氮酶的有机物质的测量,新固定氮的氮同位素组成(δ¹⁵N)被认为约为-1‰。我们表明,仅含有钒(V)和铁(Fe)的“替代”氮酶产生的固定氮具有明显更低的δ¹⁵N(-6 至-7‰)。替代氮酶对 N2 固定的重要贡献为白垩纪海洋缺氧事件和太古宙时期沉积物中异常低的 δ¹⁵N(<-2‰)提供了一个简单的解释。在这些地质时期,替代氮酶的重要作用与 Mo 氮酶期间 Mo 缺乏的证据一致,这表明微量元素和氮的全球循环之间的耦合具有另外一个维度。