Suppr超能文献

用于预测成人脊柱畸形患者重症监护病房长期住院时间的可解释机器学习方法:机器学习优于逻辑回归。

Explainable Machine Learning Approach to Prediction of Prolonged Intensive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression.

作者信息

Zaidat Bashar, Kurapatti Mark, Gal Jonathan S, Cho Samuel K, Kim Jun S

机构信息

Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA.

出版信息

Global Spine J. 2025 May;15(4):1992-2003. doi: 10.1177/21925682241277771. Epub 2024 Aug 21.

Abstract

Study DesignRetrospective cohort study.ObjectivesProlonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often 'black boxes' that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes.MethodsFive ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model's decision-making process.ResultsThe model's Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values.ConclusionsWe developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.

摘要

研究设计

回顾性队列研究。

目的

在成人脊柱畸形(ASD)患者中,长时间入住重症监护病房(ICU)是导致成本增加和预后较差的一个因素。机器学习(ML)模型最近被视为预测术前风险的一种可行方法,但它们通常是“黑匣子”,无法完全解释决策过程。本研究旨在证明ML模型能够实现与传统统计方法相似或更强的预测能力,并遵循传统的临床决策过程。

方法

在从一个大型城市学术中心收集的数据上训练了五个ML模型(决策树、随机森林、支持向量分类器、梯度提升和卷积神经网络),以预测术后是否需要长时间入住ICU。每个模型纳入了535例行后路融合术或联合融合术治疗ASD的患者,采用70 - 20 - 10的训练 - 测试 - 验证分割。使用夏普利加性解释(SHAP)值进行进一步分析,以深入了解每个模型的决策过程。

结果

模型的受试者工作特征曲线下面积(AUROC)范围为0.67至0.83。随机森林模型得分最高。根据SHAP值,模型认为手术时长、并发症和估计失血量是长时间入住ICU的最大预测因素。

结论

我们开发了一个ML模型,能够预测ASD患者是否需要长时间入住ICU。进一步的SHAP分析表明我们的模型与传统临床思维一致。因此,ML模型在协助风险分层以及提供更有效和更具成本效益的护理方面具有强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2414/12035101/ffb853eb9d17/10.1177_21925682241277771-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验