Suppr超能文献

使用可解释机器学习对择期前路颈椎间盘切除融合术后非出院的稳健预测。

Robust prediction of nonhome discharge following elective anterior cervical discectomy and fusion using explainable machine learning.

机构信息

Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, United States of America.

Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America.

出版信息

Eur Spine J. 2023 Jun;32(6):2149-2156. doi: 10.1007/s00586-023-07621-8. Epub 2023 Feb 28.

Abstract

PURPOSE

Predict nonhome discharge (NHD) following elective anterior cervical discectomy and fusion (ACDF) using an explainable machine learning model.

METHODS

2227 patients undergoing elective ACDF from 2008 to 2019 were identified from a single institutional database. A machine learning model was trained on preoperative variables, including demographics, comorbidity indices, and levels fused. The validation technique was repeated stratified K-Fold cross validation with the area under the receiver operating curve (AUROC) statistic as the performance metric. Shapley Additive Explanation (SHAP) values were calculated to provide further explainability regarding the model's decision making.

RESULTS

The preoperative model performed with an AUROC of 0.83 ± 0.05. SHAP scores revealed the most pertinent risk factors to be age, medicare insurance, and American Society of Anesthesiology (ASA) score. Interaction analysis demonstrated that female patients over 65 with greater fusion levels were more likely to undergo NHD. Likewise, ASA demonstrated positive interaction effects with female sex, levels fused and BMI.

CONCLUSION

We validated an explainable machine learning model for the prediction of NHD using common preoperative variables. Adding transparency is a key step towards clinical application because it demonstrates that our model's "thinking" aligns with clinical reasoning. Interactive analysis demonstrated that those of age over 65, female sex, higher ASA score, and greater fusion levels were more predisposed to NHD. Age and ASA score were similar in their predictive ability. Machine learning may be used to predict NHD, and can assist surgeons with patient counseling or early discharge planning.

摘要

目的

利用可解释的机器学习模型预测择期前路颈椎间盘切除融合术(ACDF)后的非出院(NHD)。

方法

从一个单一机构的数据库中确定了 2008 年至 2019 年间进行择期 ACDF 的 2227 名患者。在术前变量(包括人口统计学、合并症指数和融合水平)上训练机器学习模型。验证技术是重复分层 K 折交叉验证,以接收者操作曲线(AUROC)统计作为性能指标。计算 Shapley 加法解释(SHAP)值,以进一步解释模型的决策。

结果

术前模型的 AUROC 为 0.83±0.05。SHAP 分数显示最重要的危险因素是年龄、医疗保险和美国麻醉师协会(ASA)评分。交互分析表明,年龄在 65 岁以上的女性患者和融合水平较高的患者更有可能进行 NHD。同样,ASA 与女性、融合水平和 BMI 呈正交互作用。

结论

我们使用常见的术前变量验证了一种可解释的机器学习模型,用于预测 NHD。增加透明度是迈向临床应用的关键一步,因为它表明我们的模型的“思维”与临床推理一致。交互分析表明,年龄在 65 岁以上、女性、ASA 评分较高和融合水平较高的患者更倾向于发生 NHD。年龄和 ASA 评分在预测能力上相似。机器学习可用于预测 NHD,并可帮助外科医生对患者进行咨询或早期出院计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验